首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >3D Palmprint Identification Using Block-Wise Features and Collaborative Representation
【24h】

3D Palmprint Identification Using Block-Wise Features and Collaborative Representation

机译:使用Block-Wise功能和协作表示法进行3D掌纹识别

获取原文
获取原文并翻译 | 示例

摘要

Developing 3D palmprint recognition systems has recently begun to draw attention of researchers. Compared with its 2D counterpart, 3D palmprint has several unique merits. However, most of the existing 3D palmprint matching methods are designed for one-to-one verification and they are not efficient to cope with the one-to-many identification case. In this paper, we fill this gap by proposing a collaborative representation (CR) based framework with -norm or -norm regularizations for 3D palmprint identification. The effects of different regularization terms have been evaluated in experiments. To use the CR-based classification framework, one key issue is how to extract feature vectors. To this end, we propose a block-wise statistics based feature extraction scheme. We divide a 3D palmprint ROI into uniform blocks and extract a histogram of surface types from each block; histograms from all blocks are then concatenated to form a feature vector. Such feature vectors are highly discriminative and are robust to mere misalignment. Experiments demonstrate that the proposed CR-based framework with an -norm regularization term can achieve much better recognition accuracy than the other methods. More importantly, its computational complexity is extremely low, making it quite suitable for the large-scale identification application. Source codes are available at http://sse.tongji.edu.cn/linzhang/cr3dpalm/cr3dpalm.htm.
机译:开发3D掌纹识别系统最近已开始引起研究人员的注意。与2D对手相比,3D掌纹有几个独特的优点。但是,大多数现有的3D掌纹匹配方法都是为一对一验证而设计的,它们不能有效应对一对多标识情况。在本文中,我们通过使用-norm或-norm正则化为3D掌纹识别提出基于协作表示(CR)的框架来填补这一空白。实验中已评估了不同正则化项的影响。要使用基于CR的分类框架,一个关键问题是如何提取特征向量。为此,我们提出了一种基于块统计的特征提取方案。我们将3D掌纹ROI分成均匀的块,并从每个块中提取表面类型的直方图;然后将所有块的直方图连接起来以形成特征向量。这样的特征向量是高度可辨别的,并且对于仅未对准是鲁棒的。实验表明,所提出的带有-norm正则化术语的基于CR的框架比其他方法可以实现更好的识别精度。更重要的是,它的计算复杂度极低,使其非常适合大规模识别应用。源代码可从http://sse.tongji.edu.cn/linzhang/cr3dpalm/cr3dpalm.htm获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号