首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >A Hypergraph-Based Reduction for Higher-Order Binary Markov Random Fields
【24h】

A Hypergraph-Based Reduction for Higher-Order Binary Markov Random Fields

机译:基于超图的高阶二进制马尔可夫随机场约简

获取原文
获取原文并翻译 | 示例

摘要

Higher-order Markov Random Fields, which can capture important properties of natural images, have become increasingly important in computer vision. While graph cuts work well for first-order MRF’s, until recently they have rarely been effective for higher-order MRF’s. Ishikawa’s graph cut technique , shows great promise for many higher-order MRF’s. His method transforms an arbitrary higher-order MRF with binary labels into a first-order one with the same minima. If all the terms are submodular the exact solution can be easily found; otherwise, pseudoboolean optimization techniques can produce an optimal labeling for a subset of the variables. We present a new transformation with better performance than , , both theoretically and experimentally. While , transforms each higher-order term independently, we use the underlying hypergraph structure of the MRF to transform a group of terms at once. For binary variables, each of which appears in terms with other variables, at worst we produce non-submodular terms, while , produces . We identify a local completeness property under which our method perform even better, and show that under certain assumptions several important vision problems (including common variants of fusion moves) have this property. We show experimentally that our method produces smaller weight of non-submodular edges, and that this metric is directly related to the effectiveness of QPBO . Running on the same field of experts dataset used in , we optimally label significantly more variables (96 versus 80 percent) and converge more rapidly to a lower energy. Preliminary experiments suggest that some other higher-order MRF’s used in stereo and segmentation are also locally complete and would thus benefit from our work.
机译:可以捕获自然图像重要属性的高阶马尔可夫随机场在计算机视觉中变得越来越重要。虽然图切法对于一阶MRF效果很好,但是直到最近,它们对高阶MRF的效果仍然很少。石川的图形切割技术为许多高阶MRF展示了广阔的前景。他的方法将带有二进制标签的任意高阶MRF转换为具有相同最小值的一阶MRF。如果所有项都是亚模的,则可以轻松找到确切的解决方案。否则,伪布尔优化技术可以为变量的子集产生最佳标记。在理论上和实验上,我们都提出了一种性能优于的新转换。虽然会独立转换每个高阶项,但我们使用MRF的基础超图结构一次转换一组项。对于二进制变量,每个变量都与其他变量一起出现,最坏的情况是我们产生非亚模项,而产生。我们确定了一个局部完整性属性,在该属性下我们的方法性能更好,并且表明在某些假设下,几个重要的视觉问题(包括融合动作的常见变体)都具有此属性。我们通过实验表明,我们的方法产生的非亚模边缘的权重较小,并且该度量标准与QPBO的有效性直接相关。在中使用的专家数据集的同一领域上运行,我们以最佳方式标记了更多的变量(96%对80%),并更快地收敛到更低的能量。初步实验表明,用于立体声和分割的其他一些高阶MRF也在本地完成,因此将从我们的工作中受益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号