首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Modeling Non-Gaussian Time Series with Nonparametric Bayesian Model
【24h】

Modeling Non-Gaussian Time Series with Nonparametric Bayesian Model

机译:用非参数贝叶斯模型建模非高斯时间序列

获取原文
获取原文并翻译 | 示例

摘要

We present a class of Bayesian copula models whose major components are the marginal (limiting) distribution of a stationary time series and the internal dynamics of the series. We argue that these are the two features with which an analyst is typically most familiar, and hence that these are natural components with which to work. For the marginal distribution, we use a nonparametric Bayesian prior distribution along with a cdf-inverse cdf transformation to obtain large support. For the internal dynamics, we rely on the traditionally successful techniques of normal-theory time series. Coupling the two components gives us a family of (Gaussian) copula transformed autoregressive models. The models provide coherent adjustments of time scales and are compatible with many extensions, including changes in volatility of the series. We describe basic properties of the models, show their ability to recover non-Gaussian marginal distributions, and use a GARCH modification of the basic model to analyze stock index return series. The models are found to provide better fit and improved short-range and long-range predictions than Gaussian competitors. The models are extensible to a large variety of fields, including continuous time models, spatial models, models for multiple series, models driven by external covariate streams, and non-stationary models.
机译:我们提出了一类贝叶斯copula模型,其主要成分是平稳时间序列的边际(极限)分布和该序列的内部动力学。我们认为,这是分析师通常最熟悉的两个功能,因此,这是工作的自然组成部分。对于边际分布,我们使用非参数贝叶斯先验分布以及cdf逆cdf变换来获得较大的支持。对于内部动力学,我们依靠传统上成功的法线理论时间序列技术。将这两个组件耦合在一起,我们得到了(高斯)copula变换的自回归模型族。这些模型提供了时间尺度的连贯调整,并且与许多扩展兼容,包括该系列波动性的变化。我们描述了模型的基本属性,显示了它们恢复非高斯边际分布的能力,并使用了基本模型的GARCH修改来分析股指收益序列。与高斯竞争者相比,该模型可提供更好的拟合度,并改善了短期和长期预测。这些模型可扩展到各种各样的领域,包括连续时间模型,空间模型,多个序列的模型,由外部协变量流驱动的模型以及非平稳模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号