首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Matrix Completion for Weakly-Supervised Multi-Label Image Classification
【24h】

Matrix Completion for Weakly-Supervised Multi-Label Image Classification

机译:弱监督多标签图像分类的矩阵完成

获取原文
获取原文并翻译 | 示例

摘要

In the last few years, image classification has become an incredibly active research topic, with widespread applications. Most methods for visual recognition are fully supervised, as they make use of bounding boxes or pixelwise segmentations to locate objects of interest. However, this type of manual labeling is time consuming, error prone and it has been shown that manual segmentations are not necessarily the optimal spatial enclosure for object classifiers. This paper proposes a weakly-supervised system for multi-label image classification. In this setting, training images are annotated with a set of keywords describing their contents, but the visual concepts are not explicitly segmented in the images. We formulate the weakly-supervised image classification as a low-rank matrix completion problem. Compared to previous work, our proposed framework has three advantages: (1) Unlike existing solutions based on multiple-instance learning methods, our model is convex. We propose two alternative algorithms for matrix completion specifically tailored to visual data, and prove their convergence. (2) Unlike existing discriminative methods, our algorithm is robust to labeling errors, background noise and partial occlusions. (3) Our method can potentially be used for semantic segmentation. Experimental validation on several data sets shows that our method outperforms state-of-the-art classification algorithms, while effectively capturing each class appearance.
机译:在过去的几年中,图像分类已成为一个非常活跃的研究主题,并得到了广泛的应用。大多数视觉识别方法都受到充分监督,因为它们利用边界框或按像素分割来定位感兴趣的对象。但是,这种类型的手动标记非常耗时,容易出错,并且已经表明,手动分割不一定是对象分类器的最佳空间包围。本文提出了一种弱监督的多标签图像分类系统。在此设置中,训练图像用一组描述其内容的关键字进行注释,但视觉概念未在图像中明确划分。我们将弱监督图像分类表述为低秩矩阵完成问题。与先前的工作相比,我们提出的框架具有三个优点:(1)与基于多实例学习方法的现有解决方案不同,我们的模型是凸的。我们提出了两种可选的矩阵完成算法,专门针对视觉数据量身定制,并证明了它们的收敛性。 (2)与现有的判别方法不同,我们的算法对于标记错误,背景噪声和部分遮挡具有鲁棒性。 (3)我们的方法可以潜在地用于语义分割。在多个数据集上的实验验证表明,我们的方法优于最新的分类算法,同时可以有效地捕获每个类的外观。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号