首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Fast Coding of Feature Vectors Using Neighbor-to-Neighbor Search
【24h】

Fast Coding of Feature Vectors Using Neighbor-to-Neighbor Search

机译:使用相邻搜索快速编码特征向量

获取原文
获取原文并翻译 | 示例

摘要

Searching for matches to high-dimensional vectors using hard/soft vector quantization is the most computationally expensive part of various computer vision algorithms including the bag of visual word (BoW). This paper proposes a fast computation method, Neighbor-to-Neighbor (NTN) search , which skips some calculations based on the similarity of input vectors. For example, in image classification using dense SIFT descriptors, the NTN search seeks similar descriptors from a point on a grid to an adjacent point. Applications of the NTN search to vector quantization, a Gaussian mixture model, sparse coding, and a kernel codebook for extracting image or video representation are presented in this paper. We evaluated the proposed method on image and video benchmarks: the PASCAL VOC 2007 Classification Challenge and the TRECVID 2010 Semantic Indexing Task. NTN-VQ reduced the coding cost by 77.4 percent, and NTN-GMM reduced it by 89.3 percent, without any significant degradation in classification performance.
机译:使用硬/软矢量量化来搜索与高维矢量的匹配项是包括视觉单词袋(BoW)在内的各种计算机视觉算法在计算上最昂贵的部分。本文提出了一种快速的计算方法,即邻域搜索(Neighbor-to-Neighbor,NTN)搜索,该方法基于输入向量的相似性跳过了一些计算。例如,在使用密集SIFT描述符的图像分类中,NTN搜索从网格上的点到相邻点寻找相似的描述符。本文提出了NTN搜索在矢量量化,高斯混合模型,稀疏编码以及用于提取图像或视频表示的内核码本中的应用。我们在图像和视频基准上评估了建议的方法:PASCAL VOC 2007分类挑战和TRECVID 2010语义索引任务。 NTN-VQ减少了77.4%的编码成本,NTN-GMM减少了89.3%的编码成本,而分类性能没有任何明显的下降。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号