首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Region-Based Convolutional Networks for Accurate Object Detection and Segmentation
【24h】

Region-Based Convolutional Networks for Accurate Object Detection and Segmentation

机译:基于区域的卷积网络,用于精确的目标检测和分割

获取原文
获取原文并翻译 | 示例

摘要

Object detection performance, as measured on the canonical PASCAL VOC Challenge datasets, plateaued in the final years of the competition. The best-performing methods were complex ensemble systems that typically combined multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 50 percent relative to the previous best result on VOC 2012—achieving a mAP of 62.4 percent. Our approach combines two ideas: (1) one can apply high-capacity convolutional networks (CNNs) to bottom-up region proposals in order to localize and segment objects and (2) when labeled training data are scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, boosts performance significantly. Since we combine region proposals with CNNs, we call the resulting model an or . Source code for the complete system is available at http://www.cs.berkeley.edu/~rbg/rcnn.
机译:根据标准的PASCAL VOC Challenge数据集测得的对象检测性能在比赛的最后几年达到了平稳状态。表现最佳的方法是复杂的集成系统,该系统通常将多个低级图像特征与高级上下文结合在一起。在本文中,我们提出了一种简单且可扩展的检测算法,相对于VOC 2012上的先前最佳结果,该算法将平均平均精度(mAP)提高了50%以上,实现了62.4%的mAP。我们的方法结合了两个想法:(1)一个人可以将高容量卷积网络(CNN)应用于自下而上的区域建议,以便对对象进行定位和分割;(2)当标签训练数据稀少时,需要对有针对性的训练数据进行监督辅助任务,然后进行特定于域的微调,可以显着提高性能。由于我们将区域提案与CNN结合在一起,因此我们将结果模型称为或。完整系统的源代码位于http://www.cs.berkeley.edu/~rbg/rcnn。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号