首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Exploiting Experts’ Knowledge for Structure Learning of Bayesian Networks
【24h】

Exploiting Experts’ Knowledge for Structure Learning of Bayesian Networks

机译:利用专家知识进行贝叶斯网络的结构学习

获取原文
获取原文并翻译 | 示例

摘要

Learning Bayesian network structures from data is known to be hard, mainly because the number of candidate graphs is super-exponential in the number of variables. Furthermore, using observational data alone, the true causal graph is not discernible from other graphs that model the same set of conditional independencies. In this paper, it is investigated whether Bayesian network structure learning can be improved by exploiting the opinions of multiple domain experts regarding cause-effect relationships. In practice, experts have different individual probabilities of correctly labeling the inclusion or exclusion of edges in the structure. The accuracy of each expert is modeled by three parameters. Two new scoring functions are introduced that score each candidate graph based on the data and experts’ opinions, taking into account their accuracy parameters. In the first scoring function, the experts’ accuracies are estimated using an expectation-maximization-based algorithm and the estimated accuracies are explicitly used in the scoring process. The second function marginalizes out the accuracy parameters to obtain more robust scores when it is not possible to obtain a good estimate of experts’ accuracies. The experimental results on simulated and real world datasets show that exploiting experts’ knowledge can improve the structure learning if we take the experts’ accuracies into account.
机译:从数据学习贝叶斯网络结构是困难的,主要是因为候选图的数量在变量的数量上是超指数的。此外,仅使用观察数据,就无法将真实因果图与对同一组条件独立模型进行建模的其他图区分开。本文研究了利用多领域专家关于因果关系的观点是否可以改善贝叶斯网络结构学习。在实践中,专家具有正确标记结构中边缘包括或不包括的不同个体概率。每个专家的准确性由三个参数建模。引入了两个新的评分功能,这些功能根据数据和专家的意见对每个候选图形进行评分,并考虑其准确性参数。在第一个评分功能中,使用基于期望最大化的算法估算专家的准确度,并在评分过程中明确使用估算的准确度。第二个功能是在无法正确估计专家准确度的情况下,将精度参数边缘化,以获得更可靠的分数。在模拟和现实世界数据集上的实验结果表明,如果我们考虑专家的准确性,那么利用专家的知识可以改善结构学习。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号