首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Hierarchical Context Modeling for Video Event Recognition
【24h】

Hierarchical Context Modeling for Video Event Recognition

机译:视频事件识别的分层上下文建模

获取原文
获取原文并翻译 | 示例

摘要

Current video event recognition research remains largely target-centered. For real-world surveillance videos, target-centered event recognition faces great challenges due to large intra-class target variation, limited image resolution, and poor detection and tracking results. To mitigate these challenges, we introduced a context-augmented video event recognition approach. Specifically, we explicitly capture different types of contexts from three levels including image level, semantic level, and prior level. At the image level, we introduce two types of contextual features including the appearance context features and interaction context features to capture the appearance of context objects and their interactions with the target objects. At the semantic level, we propose a deep model based on deep Boltzmann machine to learn event object representations and their interactions. At the prior level, we utilize two types of prior-level contexts including scene priming and dynamic cueing. Finally, we introduce a hierarchical context model that systematically integrates the contextual information at different levels. Through the hierarchical context model, contexts at different levels jointly contribute to the event recognition. We evaluate the hierarchical context model for event recognition on benchmark surveillance video datasets. Results show that incorporating contexts in each level can improve event recognition performance, and jointly integrating three levels of contexts through our hierarchical model achieves the best performance.
机译:当前的视频事件识别研究仍主要以目标为中心。对于现实世界中的监控视频,由于类内目标差异大,图像分辨率有限以及检测和跟踪结果不佳,以目标为中心的事件识别面临巨大挑战。为了缓解这些挑战,我们引入了上下文增强的视频事件识别方法。具体来说,我们从图像级别,语义级别和先验级别三个层次中明确捕获了不同类型的上下文。在图像级别,我们引入两种类型的上下文特征,包括外观上下文特征和交互上下文特征,以捕获上下文对象的外观及其与目标对象的交互。在语义级别上,我们提出了一个基于深度玻尔兹曼机的深度模型来学习事件对象表示及其交互。在优先级上,我们利用两种类型的优先级上下文,包括场景启动和动态提示。最后,我们介绍了一个分层的上下文模型,该模型系统地集成了不同级别的上下文信息。通过分层上下文模型,不同级别的上下文共同有助于事件识别。我们评估用于基准监视视频数据集的事件识别的分层上下文模型。结果表明,在每个级别中合并上下文可以提高事件识别性能,并且通过我们的层次模型将三个级别的上下文联合集成可获得最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号