首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Parametric Surface Diffeomorphometry for Low Dimensional Embeddings of Dense Segmentations and Imagery
【24h】

Parametric Surface Diffeomorphometry for Low Dimensional Embeddings of Dense Segmentations and Imagery

机译:密集分割和图像的低维嵌入的参数表面微形态测量

获取原文
获取原文并翻译 | 示例

摘要

In the field of Computational Anatomy, biological form (including our focus, neuroanatomy) is studied quantitatively through the action of the diffeomorphism group on example anatomies – a technique called diffeomorphometry. Here we design an algorithm within this framework to pass from dense objects common in neuromaging studies (binary segmentations, structural images) to a sparse representation defined on the surface boundaries of anatomical structures, and embedded into the low dimensional coordinates of a parametric model. Our main new contribution is to introduce an expanded group action to simultaneously deform surfaces through direct mapping of points, as well as images through functional composition with the inverse. This allows us to index the diffeomorphisms with respect to two-dimensional surface geometries like subcortical gray matter structures, but explicitly map onto cost functions determined by noisy 3-dimensional measurements. We consider models generated from empirical covariance of training data, as well as bandlimited (Laplace-Beltrami eigenfunction) models when no such data is available. We show applications to noisy or anomalous segmentations, and other typical problems in neuroimaging studies. We reproduce statistical results detecting changes in Alzheimer's disease, despite dimensionality reduction. Lastly we apply our algorithm to the common problem of segmenting subcortical structures from T1 MR images.
机译:在计算解剖学领域中,生物形态(包括我们的研究重点,神经解剖学)是通过微形态组对示例解剖的作用进行定量研究的,这种技术称为微形态测量。在这里,我们设计了一种在该框架内的算法,以将神经影像学研究中常见的密集对象(二进制分割,结构图像)传递到在解剖结构的表面边界上定义的稀疏表示,并嵌入到参数化模型的低维坐标中。我们的主要新贡献是引入扩展的组动作,以通过点的直接映射同时使表面变形,以及通过具有反函数的功能组合来使图像变形。这使我们能够对像皮层下灰质结构这样的二维表面几何结构的变态进行索引,但是可以明确映射到由嘈杂的3维测量确定的成本函数。我们考虑从训练数据的经验协方差生成的模型,以及没有可用数据时的带限模型(拉普拉斯-贝尔特拉米特征函数)。我们展示了对噪声或异常分割以及神经成像研究中其他典型问题的应用。我们再现了统计结果,尽管尺寸减小,但检测到阿尔茨海默氏病的变化。最后,我们将算法应用于从T1 MR图像分割皮层下结构的常见问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号