机译:通过广义相似性度量和特征学习进行跨域视觉匹配
School of Data and Computer Science, Sun Yat-sen University, Guangzhou, P.R. China;
School of Data and Computer Science, Sun Yat-sen University, Guangzhou, P.R. China;
School of Computer Science and Technology, Harbin Institute of Technology, Harbin, P.R. China;
School of Mathematics and Statistics, Xidian University, Xi’an, P.R. China;
Department of Computing, The Hong Kong Polytechnic University, Hong Kong;
Face; Neural networks; Visualization; Pattern matching; Videos; Euclidean distance;
机译:跨域图像匹配的数据驱动视觉相似度
机译:利用多种特征表示,进行准确,高效的跨域视觉匹配
机译:联合深度特征学习和无监督的跨域3D对象检索的视域适应
机译:通过学习本地跨域特征描述符匹配2D图像修补程序和3D点云卷
机译:跨域视觉学习和隐私,检索和模型适应的应用
机译:通过贝叶斯推理的视觉信息融合用于面向自适应概率的特征匹配
机译:通过广义相似性度量和特征学习进行跨域视觉匹配