首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Cross-Domain Visual Matching via Generalized Similarity Measure and Feature Learning
【24h】

Cross-Domain Visual Matching via Generalized Similarity Measure and Feature Learning

机译:通过广义相似性度量和特征学习进行跨域视觉匹配

获取原文
获取原文并翻译 | 示例

摘要

Cross-domain visual data matching is one of the fundamental problems in many real-world vision tasks, e.g., matching persons across ID photos and surveillance videos. Conventional approaches to this problem usually involves two steps: i) projecting samples from different domains into a common space, and ii) computing (dis-)similarity in this space based on a certain distance. In this paper, we present a novel pairwise similarity measure that advances existing models by i) expanding traditional linear projections into affine transformations and ii) fusing affine Mahalanobis distance and Cosine similarity by a data-driven combination. Moreover, we unify our similarity measure with feature representation learning via deep convolutional neural networks. Specifically, we incorporate the similarity measure matrix into the deep architecture, enabling an end-to-end way of model optimization. We extensively evaluate our generalized similarity model in several challenging cross-domain matching tasks: person re-identification under different views and face verification over different modalities (i.e., faces from still images and videos, older and younger faces, and sketch and photo portraits). The experimental results demonstrate superior performance of our model over other state-of-the-art methods.
机译:跨域视觉数据匹配是许多现实世界视觉任务中的基本问题之一,例如,在ID照片和监控视频中匹配人员。解决该问题的常规方法通常包括两个步骤:i)将来自不同域的样本投影到一个公共空间中; ii)基于一定距离在该空间中计算(不相似)相似性。在本文中,我们提出了一种新颖的成对相似性度量,该度量通过以下方式改进现有模型:i)将传统线性投影扩展为仿射变换,并且ii)通过数据驱动的组合将仿射马氏距离和余弦相似度融合。此外,我们通过深度卷积神经网络将特征度量学习与我们的相似性度量统一起来。具体来说,我们将相似性度量矩阵整合到深度架构中,从而实现了模型优化的端到端方式。我们在几个具有挑战性的跨域匹配任务中广泛评估了我们的通用相似性模型:不同视图下的人员重新识别以及不同方式下的面部验证(即,静止图像和视频中的面部,较老和较年轻的面部以及素描和照片肖像) 。实验结果证明了我们的模型优于其他最新方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号