【24h】

Deblurring Images via Dark Channel Prior

机译:通过暗通道优先对图像进行去模糊

获取原文
获取原文并翻译 | 示例

摘要

We present an effective blind image deblurring algorithm based on the dark channel prior. The motivation of this work is an interesting observation that the dark channel of blurred images is less sparse. While most patches in a clean image contain some dark pixels, this is not the case when they are averaged with neighboring ones by motion blur. This change in sparsity of the dark channel pixels is an inherent property of the motion blur process, which we prove mathematically and validate using image data. Enforcing sparsity of the dark channel thus helps blind deblurring in various scenarios such as natural, face, text, and low-illumination images. However, imposing sparsity of the dark channel introduces a non-convex non-linear optimization problem. In this work, we introduce a linear approximation to address this issue. Extensive experiments demonstrate that the proposed deblurring algorithm achieves the state-of-the-art results on natural images and performs favorably against methods designed for specific scenarios. In addition, we show that the proposed method can be applied to image dehazing.
机译:我们提出了一种基于暗通道先验的有效盲图像去模糊算法。这项工作的动机是一个有趣的观察,即模糊图像的暗通道较稀疏。尽管干净图像中的大多数色块都包含一些暗像素,但通过运动模糊将它们与相邻像素平均时却不是这种情况。暗通道像素稀疏性的这种变化是运动模糊过程的固有属性,我们可以通过数学方法进行证明并使用图像数据进行验证。因此,增强暗通道的稀疏性有助于在各种情况下(例如自然,面部,文本和低照度图像)进行盲去模糊。然而,强加暗信道的稀疏性引入了非凸非线性优化问题。在这项工作中,我们引入线性近似来解决这个问题。大量实验表明,所提出的去模糊算法可在自然图像上实现最新的结果,并且在针对特定场景设计的方法上表现出色。另外,我们证明了所提出的方法可以应用于图像去雾。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号