首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Robust Light Field Depth Estimation Using Occlusion-Noise Aware Data Costs
【24h】

Robust Light Field Depth Estimation Using Occlusion-Noise Aware Data Costs

机译:使用遮挡噪声感知数据成本的稳健光场深度估计

获取原文
获取原文并翻译 | 示例

摘要

Depth estimation is essential in many light field applications. Numerous algorithms have been developed using a range of light field properties. However, conventional data costs fail when handling noisy scenes in which occlusion is present. To address this problem, we introduce a light field depth estimation method that is more robust against occlusion and less sensitive to noise. Two novel data costs are proposed, which are measured using the angular patch and refocus image, respectively. The constrained angular entropy cost (CAE) reduces the effects of the dominant occluder and noise in the angular patch, resulting in a low cost. The constrained adaptive defocus cost (CAD) provides a low cost in the occlusion region, while also maintaining robustness against noise. Integrating the two data costs is shown to significantly improve the occlusion and noise invariant capability. Cost volume filtering and graph cut optimization are applied to improve the accuracy of the depth map. Our experimental results confirm the robustness of the proposed method and demonstrate its ability to produce high-quality depth maps from a range of scenes. The proposed method outperforms other state-of-the-art light field depth estimation methods in both qualitative and quantitative evaluations.
机译:在许多光场应用中,深度估计至关重要。使用一系列光场特性已经开发了许多算法。但是,当处理存在遮挡的嘈杂场景时,常规数据成本会失败。为了解决这个问题,我们引入了一种光场深度估计方法,该方法对遮挡更鲁棒,对噪声更不敏感。提出了两种新颖的数据成本,分别使用角度斑块和重新聚焦图像进行测量。受限的角度熵代价(CAE)减少了主要遮挡物的影响和角度补丁中的噪声,从而降低了成本。受约束的自适应散焦成本(CAD)在遮挡区域提供了低成本,同时还保持了抗噪声的鲁棒性。整合两个数据成本可显着提高遮挡和噪声不变性。应用成本量过滤和图切割优化来提高深度图的准确性。我们的实验结果证实了所提方法的鲁棒性,并证明了其从一系列场景中生成高质量深度图的能力。所提出的方法在定性和定量评估方面均优于其他最新的光场深度估计方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号