【24h】

Deblurring Low-Light Images with Light Streaks

机译:用光条纹对低光图像进行模糊处理

获取原文
获取原文并翻译 | 示例

摘要

Images acquired in low-light conditions with handheld cameras are often blurry, so steady poses and long exposure time are required to alleviate this problem. Although significant advances have been made in image deblurring, state-of-the-art approaches often fail on low-light images, as a sufficient number of salient features cannot be extracted for blur kernel estimation. On the other hand, light streaks are common phenomena in low-light images that have not been extensively explored in existing approaches. In this work, we propose an algorithm that utilizes light streaks to facilitate deblurring low-light images. The light streaks, which commonly exist in the low-light blurry images, contain rich information regarding camera motion and blur kernels. A method is developed in this work to detect light streaks for kernel estimation. We introduce a non-linear blur model that explicitly takes light streaks and corresponding light sources into account, and pose them as constraints for estimating the blur kernel in an optimization framework. For practical applications, the proposed algorithm is extended to handle images undergoing non-uniform blur. Experimental results show that the proposed algorithm performs favorably against the state-of-the-art methods on deblurring real-world low-light images.
机译:用手持相机在弱光条件下获取的图像通常模糊,因此需要稳定的姿势和较长的曝光时间才能缓解此问题。尽管在图像去模糊方面已经取得了重大进展,但是由于无法提取足够数量的显着特征用于模糊核估计,因此现有技术的方法经常在低光图像上失败。另一方面,光斑是低光图像中的常见现象,在现有方法中尚未广泛研究。在这项工作中,我们提出了一种利用光条纹来促进对低光图像去模糊的算法。通常在弱光模糊图像中存在的光条纹包含有关相机运动和模糊核的丰富信息。在这项工作中开发了一种方法来检测光条纹以进行核估计。我们引入了一个非线性模糊模型,该模型明确考虑了光条纹和相应的光源,并将它们摆为优化框架中估计模糊内核的约束。对于实际应用,所提出的算法被扩展为处理经历非均匀模糊的图像。实验结果表明,所提出的算法在对现实世界中的弱光图像进行去模糊处理方面表现出优异的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号