首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Probabilistic Framework for the Characterization of Surfaces and Edges in Range Images, with Application to Edge Detection
【24h】

Probabilistic Framework for the Characterization of Surfaces and Edges in Range Images, with Application to Edge Detection

机译:范围图像中表面和边缘特征化的概率框架及其在边缘检测中的应用

获取原文
获取原文并翻译 | 示例

摘要

We develop a powerful probabilistic framework for the local characterization of surfaces and edges in range images. We use the geometrical nature of the data to derive an analytic expression for the joint probability density function (pdf) for the random variables used to model the ranges of a set of pixels in a local neighborhood of an image. We decompose this joint pdf by considering independently the cases where two real world points corresponding to two neighboring pixels are locally on the same real world surface or not. In particular, we show that this joint pdf is linked to the Voigt pdf and not to the Gaussian pdf as it is assumed in some applications. We apply our framework to edge detection and develop a locally adaptive algorithm that is based on a probabilistic decision rule. We show in an objective evaluation that this new edge detector performs better than prior art edge detectors. This proves the benefits of the probabilistic characterization of the local neighborhood as a tool to improve applications that involve range images.
机译:我们为范围图像中的表面和边缘的局部特征开发了强大的概率框架。我们使用数据的几何性质为联合概率密度函数(pdf)导出用于对图像局部邻域中的一组像素范围进行建模的随机变量的解析表达式。我们通过独立考虑对应于两个相邻像素的两个真实世界点是否局部位于同一真实世界表面上的情况来分解此联合pdf。特别是,我们证明了此联合pdf与Voigt pdf链接,而不是在某些应用中假定的与高斯pdf链接。我们将我们的框架应用于边缘检测并开发基于概率决策规则的局部自适应算法。我们在客观评估中表明,这种新型边缘检测器的性能优于现有技术的边缘检测器。这证明了将本地邻域的概率特征描述作为改进涉及距离图像的应用程序的工具的好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号