首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Weighted Manifold Alignment using Wave Kernel Signatures for Aligning Medical Image Datasets
【24h】

Weighted Manifold Alignment using Wave Kernel Signatures for Aligning Medical Image Datasets

机译:使用Wave Kernel签名的加权歧管对齐方式以对齐医学图像数据集

获取原文
获取原文并翻译 | 示例

摘要

Manifold alignment (MA) is a technique to map many high-dimensional datasets to one shared low-dimensional space. Here we develop a pipeline for using MA to reconstruct high-resolution medical images. We present two key contributions. First, we develop a novel MA scheme in which each high-dimensional dataset can be differently weighted preventing noisier or less informative data from corrupting the aligned embedding. We find that this generalisation improves performance in our experiments in both supervised and unsupervised MA problems. Second, we use the wave kernel signature as a graph descriptor for the unsupervised MA case finding that it significantly outperforms the current state-of-the-art methods and provides higher quality reconstructed magnetic resonance volumes than existing methods.
机译:流形比对(MA)是一种将许多高维数据集映射到一个共享的低维空间的技术。在这里,我们开发了使用MA重建高分辨率医学图像的管道。我们提出了两个关键的贡献。首先,我们开发了一种新颖的MA方案,其中可以对每个高维数据集进行不同的加权,以防止噪声较大或信息量较小的数据破坏对齐的嵌入。我们发现,这种归纳可以提高我们在有监督和无监督的MA问题中的实验性能。第二,我们使用波核签名作为无监督MA案例的图形描述符,发现它明显优于当前的最新方法,并且比现有方法提供更高质量的重构磁共振体积。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号