首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Cooperative Training of Descriptor and Generator Networks
【24h】

Cooperative Training of Descriptor and Generator Networks

机译:描述符网络与生成器网络的合作培训

获取原文
获取原文并翻译 | 示例

摘要

This paper studies the cooperative training of two generative models for image modeling and synthesis. Both models are parametrized by convolutional neural networks (ConvNets). The first model is a deep energy-based model, whose energy function is defined by a bottom-up ConvNet, which maps the observed image to the energy. We call it the descriptor network. The second model is a generator network, which is a non-linear version of factor analysis. It is defined by a top-down ConvNet, which maps the latent factors to the observed image. The maximum likelihood learning algorithms of both models involve MCMC sampling such as Langevin dynamics. We observe that the two learning algorithms can be seamlessly interwoven into a cooperative learning algorithm that can train both models simultaneously. Specifically, within each iteration of the cooperative learning algorithm, the generator model generates initial synthesized examples to initialize a finite-step MCMC that samples and trains the energy-based descriptor model. After that, the generator model learns from how the MCMC changes its synthesized examples. That is, the descriptor model teaches the generator model by MCMC, so that the generator model accumulates the MCMC transitions and reproduces them by direct ancestral sampling. We call this scheme MCMC teaching. We show that the cooperative algorithm can learn highly realistic generative models.
机译:本文研究了两种生成模型的协同训练,以进行图像建模和合成。两种模型都由卷积神经网络(ConvNets)参数化。第一个模型是基于深度能量的模型,其能量函数由自下而上的ConvNet定义,该模型将观察到的图像映射到能量。我们称其为描述符网络。第二个模型是发电机网络,它是因子分析的非线性版本。它由自上而下的ConvNet定义,它将潜在因素映射到观察到的图像。两种模型的最大似然学习算法都涉及MCMC采样,例如Langevin动力学。我们观察到,两种学习算法可以无缝地交织到可以同时训练两个模型的协作学习算法中。具体而言,在合作学习算法的每次迭代中,生成器模型都会生成初始的合成示例,以初始化对采样和训练基于能量的描述符模型进行采样的有限步MCMC。之后,生成器模型将从MCMC如何更改其合成示例中学习。也就是说,描述符模型通过MCMC来指导生成器模型,以便生成器模型累积MCMC转换并通过直接祖先采样来再现它们。我们将此方案称为MCMC教学。我们证明了合作算法可以学习高度现实的生成模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号