首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Temporal Segment Networks for Action Recognition in Videos
【24h】

Temporal Segment Networks for Action Recognition in Videos

机译:用于视频中动作识别的时间段网络

获取原文
获取原文并翻译 | 示例

摘要

We present a general and flexible video-level framework for learning action models in videos. This method, called temporal segment network (TSN), aims to model long-range temporal structure with a new segment-based sampling and aggregation scheme. This unique design enables the TSN framework to efficiently learn action models by using the whole video. The learned models could be easily deployed for action recognition in both trimmed and untrimmed videos with simple average pooling and multi-scale temporal window integration, respectively. We also study a series of good practices for the implementation of the TSN framework given limited training samples. Our approach obtains the state-the-of-art performance on five challenging action recognition benchmarks: HMDB51 (71.0 percent), UCF101 (94.9 percent), THUMOS14 (80.1 percent), ActivityNet v1.2 (89.6 percent), and Kinetics400 (75.7 percent). In addition, using the proposed RGB difference as a simple motion representation, our method can still achieve competitive accuracy on UCF101 (91.0 percent) while running at 340 FPS. Furthermore, based on the proposed TSN framework, we won the video classification track at the ActivityNet challenge 2016 among 24 teams.
机译:我们提供了一个通用且灵活的视频级框架,用于学习视频中的动作模型。这种称为时间分段网络(TSN)的方法旨在使用一种新的基于分段的采样和聚合方案对远程时间结构进行建模。这种独特的设计使TSN框架可以通过使用整个视频来有效地学习动作模型。通过简单的平均池化和多尺度时间窗口集成,可以轻松地将学习到的模型轻松地用于修剪和未修剪视频中的动作识别。在有限的培训样本的情况下,我们还研究了一系列实施TSN框架的良好做法。我们的方法通过五个具有挑战性的动作识别基准获得了最先进的性能:HMDB51(71.0%),UCF101(94.9%),THUMOS14(80.1%),ActivityNet v1.2(89.6%)和Kinetics400(75.7)百分)。此外,使用建议的RGB差异作为简单的运动表示,当以340 FPS运行时,我们的方法仍可以在UCF101上达到竞争性精度(91.0%)。此外,基于建议的TSN框架,我们在24个团队的ActivityNet挑战赛2016中赢得了视频分类轨道。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号