首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Exploiting Unlabeled Data in CNNs by Self-Supervised Learning to Rank
【24h】

Exploiting Unlabeled Data in CNNs by Self-Supervised Learning to Rank

机译:通过自我监督学习对CNN中的未标记数据进行排名

获取原文
获取原文并翻译 | 示例

摘要

For many applications the collection of labeled data is expensive laborious. Exploitation of unlabeled data during training is thus a long pursued objective of machine learning. Self-supervised learning addresses this by positing an auxiliary task (different, but related to the supervised task) for which data is abundantly available. In this paper, we show how ranking can be used as a proxy task for some regression problems. As another contribution, we propose an efficient backpropagation technique for Siamese networks which prevents the redundant computation introduced by the multi-branch network architecture. We apply our framework to two regression problems: Image Quality Assessment (IQA) and Crowd Counting. For both we show how to automatically generate ranked image sets from unlabeled data. Our results show that networks trained to regress to the ground truth targets for labeled data and to simultaneously learn to rank unlabeled data obtain significantly better, state-of-the-art results for both IQA and crowd counting. In addition, we show that measuring network uncertainty on the self-supervised proxy task is a good measure of informativeness of unlabeled data. This can be used to drive an algorithm for active learning and we show that this reduces labeling effort by up to 50 percent.
机译:对于许多应用程序,标记数据的收集是费力的。因此,在训练期间利用未标记的数据是机器学习的长期追求的目标。自我监督学习通过放置一个辅助任务(不同但与该监督任务有关)来解决此问题,该任务的数据非常丰富。在本文中,我们展示了如何将排名用作某些回归问题的代理任务。作为另一贡献,我们提出了一种用于暹罗网络的有效反向传播技术,该技术可防止多分支网络体系结构引入的冗余计算。我们将框架应用于两个回归问题:图像质量评估(IQA)和人群计数。两者都展示了如何根据未标记的数据自动生成排名图像集。我们的结果表明,经过训练可以回归到标记数据的地面真实目标并同时学习对未标记数据进行排名的网络,可以获得更好的IQA和人群计数的最新结果。另外,我们表明,在自我监督的代理任务上测量网络不确定性是对未标记数据的信息性的良好度量。这可以用来驱动主动学习的算法,我们证明这可以减少多达50%的标记工作量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号