首页> 外文期刊>Parallel Computing >Derivation of systolic algorithms for the algebraic path problem by recurrence transformations
【24h】

Derivation of systolic algorithms for the algebraic path problem by recurrence transformations

机译:通过递归变换推导代数路径问题的收缩算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we are interested in solving the algebraic path problem (APP) on regular arrays. We first unify previous contributions with recurrence transformations. Then, we propose a new localization technique without long-range communication which leads to a piecewise affine scheduling of 4n + Θ(1) steps, where n is the size of the problem. The deri- vation of a locally connected space-time minimal solution with respect to the new scheduling constitutes the second contribution of the paper. This new design requires n~2/3 + Θ(n) ele- mentary processors and solves the problem in 4n + Θ(1) steps, and this includes loading and unloading time. This is an improvement over the best previously known bounds.
机译:在本文中,我们对解决常规阵列上的代数路径问题(APP)感兴趣。我们首先通过递归转换统一以前的贡献。然后,我们提出了一种无需远程通信的新定位技术,该技术导致了4n +Θ(1)个步骤的分段仿射调度,其中n是问题的大小。相对于新调度而言,本地连接的时空最小解的派生构成了本文的第二个贡献。这种新设计需要n〜2/3 +Θ(n)的基本处理器,并以4n +Θ(1)的步长解决了这个问题,其中包括加载和卸载时间。这是对以前最好的已知界限的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号