首页> 外文期刊>Parallel Computing >Parallel computing and quantum chromodynamics
【24h】

Parallel computing and quantum chromodynamics

机译:并行计算和量子色动力学

获取原文
获取原文并翻译 | 示例

摘要

The study of Quantum Chromodynamics (QCD) remains one of the most challenging topics in elementary particle physics. The lattice formulation of QCD, in which space--time is treated as a four-dimensional hypercubic grid of points, provides the means for a numerical solution from first principles but makes extreme demands upon computational performance. High Performance Computing (HPC) offers us the tantalising prospect of a verification of QCD through the precise reproduction of the known masses of the strongly interacting par- ticles. It is also leading to the development of a phenomenological tool capable of disentan- gling strong interaction effects from weak interaction effects in the decays of one kind of quark into another, crucial for determining parameters of the Standard Model of particle physics. The 1980s saw the first attempts to apply parallel architecture computers to lattice QCD. The SIMD and MIMD machines used in these pioneering efforts were the ICL DAP and the Cosmic Cube, respectively. These were followed by the Connection Machine, the Meiko i860 Computing Surface and the Intel Hypercube. The end of the decade witnessed a rise in the development of special purpose dedicated parallel systems, notably the APE machines in Rome, the Columbia machines, the GF-11 system at IBM Research and the QCDPAX project in Tsukuba. The state-of the-art is represented by the CP--PACS machine at Tsukuba, and QCDSP, the latest Columbia machine. We give a brief pedagogic review of lattice QCD, outline the computational methodology used and discuss the sources of systematic error that arise in numerical calculations. We outline some of the early calculations and discuss parallel architectures and their application to QCD. giving examples of both commercial and special purpose machines. After a short section on recent developments, we describe state-of the-art machines and conclude with the prospects for the future.
机译:量子色动力学(QCD)的研究仍然是基本粒子物理学中最具挑战性的主题之一。 QCD的晶​​格公式将时空视为点的多维超立方网格,它为基于第一原理的数值解提供了手段,但对计算性能提出了极高的要求。高性能计算(HPC)通过精确复制强相互作用粒子的已知质量,为我们提供了验证QCD的诱人前景。这也导致了一种现象学工具的开发,该工具能够将一种夸克的衰变中的弱相互作用效应分解为另一种夸克中的弱相互作用效应,这对于确定粒子物理学标准模型的参数至关重要。 1980年代首次尝试将并行体系结构计算机应用于QCD。在这些开拓性工作中使用的SIMD和MIMD机器分别是ICL DAP和Cosmic Cube。其次是连接机,Meiko i860计算表面和英特尔Hypercube。十年末见证了专用并行系统的发展,特别是罗马的APE机器,哥伦比亚的机器,IBM Research的GF-11系统以及筑波的QCDPAX项目。筑波的CP--PACS机器和最新的哥伦比亚机器QCDSP代表了最先进的技术。我们对晶格QCD进行了简短的教学回顾,概述了所用的计算方法,并讨论了数值计算中出现的系统误差的来源。我们概述了一些早期计算,并讨论了并行体系结构及其在QCD中的应用。举例说明商用和专用机器。在简短介绍了最近的发展之后,我们描述了最先进的机器并总结了未来的前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号