首页> 外文期刊>Parallel Computing >Task scheduling using a block dependency DAG for block-oriented sparse Cholesky factorization
【24h】

Task scheduling using a block dependency DAG for block-oriented sparse Cholesky factorization

机译:使用面向块的稀疏Cholesky分解的块依赖DAG的任务调度

获取原文
获取原文并翻译 | 示例

摘要

Block-oriented sparse Cholesky factorization decomposes a sparse matrix into rectangular subblocks; each block can then be handled as a computational unit in order to increase data reuse in a hierarchical memory system. Also, the factorization method increases the degree of concurrency and reduces the overall communication volume so that it performs more efficiently on a distributed-memory multiprocessor system than the customary column-oriented factorization method. But until now, mapping of blocks to processors has been designed for load balance with restricted communication patterns. In this paper, we represent tasks using a block dependency DAG that represents the execution behavior of block sparse Cholesky factorization in a distributed-memory system. Since the characteristics of tasks for block Cholesky factorization are different from those of the conventional parallel task model, we propose a new task scheduling algorithm using a block dependency DAG. The proposed algorithm consists of two stages: early-start clustering, and affined cluster mapping (ACM). The early-start clustering stage is used to cluster tasks while preserving the earliest start time of a task without limiting parallelism. After task clustering, the ACM stage allocates clusters to processors considering both communication cost and load balance. Experimental results on a Myrinet cluster system show that the proposed task scheduling approach outperforms other processor mapping methods.
机译:面向块的稀疏Cholesky分解将稀疏矩阵分解为矩形子块。然后可以将每个块作为计算单元来处理,以增加分层存储系统中的数据重用。同样,因式分解方法增加了并发程度,并减少了总体通信量,因此与常规的面向列的因式分解方法相比,它在分布式内存多处理器系统上的执行效率更高。但是直到现在,块到处理器的映射已被设计用于通过受限的通信模式实现负载平衡。在本文中,我们使用块依赖性DAG表示任务,该依赖项表示分布式内存系统中块稀疏Cholesky因式分解的执行行为。由于用于块Cholesky分解的任务的特征与常规并行任务模型的特征不同,因此我们提出了一种使用块依赖DAG的新任务调度算法。所提出的算法包括两个阶段:早期启动聚类和固定聚类映射(ACM)。早期启动集群阶段用于集群任务,同时保留任务的最早启动时间,而不会限制并行性。在任务群集之后,ACM阶段会考虑通信成本和负载平衡,将群集分配给处理器。在Myrinet集群系统上的实验结果表明,所提出的任务调度方法优于其他处理器映射方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号