首页> 外文期刊>Parallel Computing >A massively parallel architecture for distributed genetic algorithms
【24h】

A massively parallel architecture for distributed genetic algorithms

机译:分布式遗传算法的大规模并行架构

获取原文
获取原文并翻译 | 示例

摘要

Genetic algorithms are a group of stochastic search algorithms with a broad field of application. Although highly successful in many fields, genetic algorithms in general suffer from long execution times. In this article we describe parallel models for genetic algorithms in general and the massively parallel Diffusion Model in particular, in order to speedup the execution. Implemented in hardware, the Diffusion Model constitutes an efficient, flexible, scalable and mobile machine learning system. This fine-grained system consists of a large number of processing nodes that evolve a large number of small, overlapping subpopulations. Every processing node has an embedded CPU that executes a linear machine code representation at a rate of up to 20,000 generations per second. Besides being efficient, implemented in hardware this model is highly portable and applicable to mobile, on-line applications. The architecture is also scalable so that larger problems can be addressed with a system with more processing nodes. Finally, the use of linear machine code as genetic programming representation and VHDL as hardware description language, makes the system highly flexible and easy to adapt to different applications. Through a series of experiments we determine the settings of the most important parameters of the Diffusion Model. We also demonstrate the effectiveness and flexibility of the architecture on a set of regression problems, a classification application and a time series forecasting application.
机译:遗传算法是一组具有广泛应用范围的随机搜索算法。尽管遗传算法在许多领域都非常成功,但总体而言执行时间长。在本文中,我们通常描述遗传算法的并行模型,尤其是大规模并行扩散模型,以加快执行速度。通过硬件实施,扩散模型构成了高效,灵活,可扩展的移动机器学习系统。这种细粒度的系统由大量处理节点组成,这些节点会演化出大量小的重叠子群体。每个处理节点都有一个嵌入式CPU,以每秒20,000代的速度执行线性机器代码表示。除了高效,以硬件实现之外,该模型还具有高度的可移植性,并适用于移动在线应用程序。该体系结构也是可伸缩的,因此可以使用具有更多处理节点的系统来解决更大的问题。最后,使用线性机器代码作为遗传编程表示和使用VHDL作为硬件描述语言,使系统具有高度的灵活性,并易于适应不同的应用。通过一系列实验,我们确定了扩散模型最重要参数的设置。我们还将在一系列回归问题,分类应用程序和时间序列预测应用程序上证明该体系结构的有效性和灵活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号