首页> 外文期刊>Parallel Computing >Data distribution for dense factorization on computers with memory heterogeneity
【24h】

Data distribution for dense factorization on computers with memory heterogeneity

机译:具有内存异构性的计算机上的密集分解的数据分布

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study the problem of optimal matrix partitioning for parallel dense factorization on heterogeneous processors. First, we outline existing algorithms solving the problem that use a constant performance model of processors, when the relative speed of each processor is represented by a positive constant. We also propose a new efficient algorithm, called the Reverse algorithm, solving the problem with the constant performance model. We extend the presented algorithms to the functional performance model, representing the speed of a processor by a continuous function of the task size. The model, in particular, takes account of memory heterogeneity and paging effects resulting in significant variations of relative speeds of the processors with the increase of the task size. We experimentally demonstrate that the functional extension of the Reverse algorithm outperforms functional extensions of traditional algorithms.
机译:在本文中,我们研究了异构处理器上并行密集分解的最佳矩阵划分问题。首先,当每个处理器的相对速度由正常数表示时,我们概述了解决使用恒定性能处理器模型的问题的现有算法。我们还提出了一种新的高效算法,称为反向算法,以恒定性能模型解决了该问题。我们将提出的算法扩展到功能性能模型,通过任务大小的连续函数来表示处理器的速度。该模型尤其考虑了内存异质性和分页效应,这导致了任务大小增加,处理器相对速度的显着变化。我们实验证明反向算法的功能扩展优于传统算法的功能扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号