首页> 外文期刊>Parallel Computing >Speedup vs. quality: Asynchronous and cluster-based distributed adaptive genetic algorithms for ordered problems
【24h】

Speedup vs. quality: Asynchronous and cluster-based distributed adaptive genetic algorithms for ordered problems

机译:加速与质量:有序问题的异步和基于群集的分布式自适应遗传算法

获取原文
获取原文并翻译 | 示例

摘要

While the main motivation for Parallel Genetic Algorithms (PGAs) has been to improve the scalability of Genetic Algorithms (GAs), techniques and strategies for maintaining population diversity is an equally active research topic. Island Model Genetic Algorithms (IMGAs) represent one of the most mature strategies for developing PGAs in an effective and scalable manner. However, identifying how much migration and which individuals should migrate are open research problems. Meanwhile, recent developments in Adaptive Genetic Algorithms (AGAs) have led to techniques for monitoring and maintaining population diversity in an online manner. The aim of the present work is to introduce adaptive techniques and mechanisms into PGAs in order to determine when, how much and which individuals are most suitable for migration. We present a number of adaptive PGAs that aim to maintain diversity and maximise coverage of the solution space by minimising the overlap between islands. PGAs presented in this work are empirically assessed for their abilities in scalability, ability to find good quality solutions and maintain population diversity in ordered problems. These metrics are compared to existing adaptive and parallel GAs selected from the literature for their performance. We estimated the overhead costs of monitoring diversity and communication would result in a trade off between scalability and search capabilities. Our results suggest that an asynchronous adaptive PGA has the greatest speedup potential. However, while localising adaptive populations by k-means clustering is less scalable, results indicate that the method is more effective at directing the search in order to reduce the likelihood of islands searching in the same areas of the solution space. For this reason, an adaptive PGA with clustering-based migration demonstrates greater potential in solution quality while maintaining good speedup performance.
机译:虽然并行遗传算法(PGA)的主要动机是提高遗传算法(气体)的可扩展性,但维持人口多样性的技术和策略是一个同样活跃的研究主题。岛模型遗传算法(IMGAS)代表了以有效和可扩展的方式开发PGA最成熟的策略之一。但是,确定迁移的迁移量和迁移的迁移是多少开放的研究问题。同时,自适应遗传算法(AGAs)的最新发展导致了以在线方式监测和维护人口多样性的技术。本作本作的目的是将自适应技术和机制引入PGA,以便确定何时,个人最适合迁移的时间和哪个人。我们展示了许多自适应PGA,其目的是通过最小化岛屿之间的重叠来保持多样性并最大限度地提高解决方案空间的覆盖范围。在这项工作中提出的PGA在经验上评估了他们在可扩展性方面的能力,找到了优质解决方案的能力,并在有序问题中保持人口多样性。将这些指标与从文献中选择的现有自适应和平行气体进行比较,以实现它们的性能。我们估计监测多样性和沟通的开销成本将导致可扩展性和搜索能力之间的折衷。我们的结果表明异步自适应PGA具有最大的加速潜力。然而,虽然通过K-means聚类的定位自适应群体不可缩放,但结果表明该方法更有效地指导搜索,以便降低在解决方案的同一区域搜索岛屿的可能性。因此,具有基于聚类的迁移的自适应PGA在保持良好的加速性能的同时,溶液质量的潜力更大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号