首页> 外文期刊>Parallel Computing >A scalable and low latency probe-based scheduler for data analytics frameworks
【24h】

A scalable and low latency probe-based scheduler for data analytics frameworks

机译:用于数据分析框架的可扩展和低延迟探测调度程序

获取原文
获取原文并翻译 | 示例

摘要

Today's data analytics frameworks divide jobs into many parallel tasks such that each task operates on a small partition of data in order to execute jobs with low latency. Such frameworks often rely on probe based distributed schedulers to tackle the challenge of reducing the associated overhead. Unfortunately, the existing solutions do not perform efficiently under workload fluctuations and heterogeneous job durations. This is due to a problem called Head-of-Line blocking, i.e., short tasks are enqueued at workers behind longer tasks. To overcome this problem, we propose Peacock (Khelghatdoust and Gramoli, 0000) [25] a new fully distributed probe-based scheduling method. Unlike the existing methods, Peacock introduces a novel probe rotation technique. Workers form a ring overlay network and rotate probes using elastic queues of workers. It is augmented by a novel starvation-free probe reordering algorithm executed by workers. We evaluate Peacock against two existing state-of-the-art probe based solutions through a trace driven simulation of up to 20,000 workers and a distributed experiment of 100 workers in Apache Spark under Google, Cloudera, and Yahoo! traces. The performance results indicate that Peacock outperforms the state-of-the-art in all cluster sizes and loads. Our distributed experiments confirm our simulation results.
机译:今天的数据分析框架将作业划分为许多并行任务,使得每个任务在数据的小分区上运行,以便执行低延迟的作业。这种框架通常依赖于基于探测的分布式调度器来解决减少相关开销的挑战。遗憾的是,现有的解决方案在工作负载波动和异构作业持续时间内不会有效地执行。这是由于称为线路拦截的问题,即,短任务在更长任务后的工人身上被排除。为了克服这个问题,我们提出了孔雀(Khelghatdoust和Gramoli,0000)[25]一种新的完全分布式探测的调度方法。与现有方法不同,孔雀介绍了一种新颖的探针旋转技术。工人形成一个环形覆盖网络并使用工人弹性队列旋转探头。它由工人执行的新饥饿免探针重新排序算法增强。我们通过轨迹仿真评估孔雀,通过轨迹仿真,高达20,000名工人和100名工人在谷歌,Cloudera和Yahoo!下的100名工人分布式实验。痕迹。性能结果表明,孔雀在所有簇尺寸和负载中占据了最先进的。我们的分布式实验证实了我们的仿真结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号