首页> 外文期刊>Parallel Computing >Parallelization of network motif discovery using star contraction
【24h】

Parallelization of network motif discovery using star contraction

机译:使用星收缩的网络主题发现的并行化

获取原文
获取原文并翻译 | 示例

摘要

Network motifs are widely used to uncover structural design principles of complex networks. Current sequential network motif discovery algorithms become inefficient as motif size grows, thus parallelization methods have been proposed in the literature. In this study, we use star contraction algorithm to partition complex networks efficiently for parallel discovery of network motifs. We propose two new heuristics to make star contraction more suitable for partitioning of complex networks. The effectiveness of our partitioning strategies is verified using the ESU algorithm for subgraph counting. We also propose a ghost vertices detection algorithm to ensure that all the motifs located in multiple parts are exactly found. We implement our method using MPI libraries and tested on real-life complex networks of different domains. We compared speedups of star contraction algorithm with speedups of other graph partitioning algorithms. Our algorithm obtained better speedups than those of other partitioning algorithms for most cases. Our algorithm provides significant speedups when compared to sequential ESU algorithm allowing discovery of larger network motifs.
机译:网络图案广泛用于揭示复杂网络的结构设计原理。随着主题尺寸的增长,当前顺序网络图案算法变得效率低下,因此在文献中提出了并行化方法。在这项研究中,我们使用星收缩算法可以有效地分区复杂网络,以便并行发现网络图案。我们提出了两个新的启发式方法,使明星收缩更适合分区复杂网络。使用Subraph Counting的ESU算法来验证我们的分区策略的有效性。我们还提出了一种重影顶点检测算法,以确保恰好找到了位于多个部分中的所有图案。我们使用MPI库实施我们的方法,并在不同域的真实复杂网络上测试。我们将星形收缩算法的加速与其他图形分区算法的加速进行了比较。对于大多数情况,我们的算法比其他分区算法的算法更好。与顺序ESU算法相比,我们的算法提供了显着的加速度,允许发现较大的网络图案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号