首页> 外文期刊>Parallel Computing >Delaunay triangulation of large-scale datasets using two-level parallelism
【24h】

Delaunay triangulation of large-scale datasets using two-level parallelism

机译:使用两级并行性的大型数据集的Delaunay三角测量

获取原文
获取原文并翻译 | 示例

摘要

Because of the importance of Delaunay Triangulation in science and engineering, researchers have devoted extensive attention to parallelizing this fundamental algorithm. However, generating unstructured meshes for extremely large point sets remains a barrier for scientists working with large scale or high resolution datasets. In our previous paper, we introduced a novel algorithm - Triangulation of Independent Partitions in Parallel (TIPP) which divides the domain into many independent partitions that can be triangulated in parallel. However, using only a single master process introduced a performance bottleneck and inhibited scalability. In this paper, we refine our description of the original TIPP algorithm, and also extend TIPP to employ multiple master processes, distributing computational load across several machines. This new design improves both performance and scalability, and can produce 20 billion triangles using only 10 commodity nodes in under 30 minutes.
机译:由于Delaunay三角测量在科学和工程中的重要性,研究人员致力于广泛关注并行化这一基本算法。然而,为极大的点集产生非结构化网格仍然是使用大规模或高分辨率数据集的科学家的障碍。在我们之前的论文中,我们介绍了一种新颖的算法 - 并行(TIPP)的独立分区三角测量,该分区将域分为许多可以并行三角化的独立分区。但是,仅使用单个主过程引入性能瓶颈并抑制可扩展性。在本文中,我们优化了我们对原始TIPP算法的描述,并扩展了Tipp以采用多个主进程,在多台机器上分配计算负荷。这种新设计可以提高性能和可扩展性,并且可以在30分钟内使用10个商品节点的20亿三角形。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号