首页> 外文期刊>Parallel Computing >Programming languages for data-Intensive HPC applications: A systematic mapping study
【24h】

Programming languages for data-Intensive HPC applications: A systematic mapping study

机译:数据密集型HPC应用程序的编程语言:系统映射研究

获取原文
获取原文并翻译 | 示例

摘要

A major challenge in modelling and simulation is the need to combine expertise in both software technologies and a given scientific domain. When High-Performance Computing (HPC) is required to solve a scientific problem, software development becomes a problematic issue. Considering the complexity of the software for HPC, it is useful to identify programming languages that can be used to alleviate this issue.Because the existing literature on the topic of HPC is very dispersed, we performed a Systematic Mapping Study (SMS) in the context of the European COST Action cHiPSet. This literature study maps characteristics of various programming languages for data-intensive HPC applications, including category, typical user profiles, effectiveness, and type of articles.We organised the SMS in two phases. In the first phase, relevant articles are identified employing an automated keyword-based search in eight digital libraries. This lead to an initial sample of 420 papers, which was then narrowed down in a second phase by human inspection of article abstracts, titles and keywords to 152 relevant articles published in the period 2006-2018. The analysis of these articles enabled us to identify 26 programming languages referred to in 33 of relevant articles. We compared the outcome of the mapping study with results of our questionnaire-based survey that involved 57 HPC experts.The mapping study and the survey revealed that the desired features of programming languages for data-intensive HPC applications are portability, performance and usability. Furthermore, we observed that the majority of the programming languages used in the context of data-intensive HPC applications are text-based general-purpose programming languages. Typically these have a steep learning curve, which makes them difficult to adopt. We believe that the outcome of this study will inspire future research and development in programming languages for data-intensive HPC applications. (C) 2019 Elsevier B.V. All rights reserved.
机译:建模和仿真的主要挑战是需要结合软件技术和特定科学领域的专业知识。当需要高性能计算(HPC)来解决科学问题时,软件开发就成为有问题的问题。考虑到HPC软件的复杂性,确定可用于缓解此问题的编程语言非常有用。由于关于HPC主题的现有文献非常分散,因此我们在上下文中进行了系统映射研究(SMS)欧洲COST行动cHiPSet的名称。该文献研究绘制了用于数据密集型HPC应用程序的各种编程语言的特征,包括类别,典型用户配置文件,有效性和文章类型。我们分两个阶段组织了SMS。在第一阶段,在八个数字图书馆中使用基于关键字的自动搜索来识别相关文章。这导致产生了420篇论文的初始样本,然后在第二阶段通过人工检查文章摘要,标题和关键字将其范围缩小到2006-2018年期间发表的152条相关文章。对这些文章的分析使我们能够确定33篇相关文章中提到的26种编程语言。我们将映射研究的结果与基于问卷调查的调查结果进行了比较,该调查涉及57位HPC专家。该映射研究和调查表明,数据密集型HPC应用程序所需的编程语言功能是可移植性,性能和可用性。此外,我们观察到,在数据密集型HPC应用程序上下文中使用的大多数编程语言都是基于文本的通用编程语言。通常,它们具有陡峭的学习曲线,这使其难以采用。我们相信,这项研究的结果将激发未来针对数据密集型HPC应用程序的编程语言的研究和开发。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Parallel Computing》 |2020年第3期|102584.1-102584.17|共17页
  • 作者

  • 作者单位

    Univ Nova Lisboa Fac Ciencias & Tecnol DI NOVA LINCS Lisbon Portugal;

    Univ Torino Turin Italy;

    Univ Vienna Vienna Austria;

    Univ Stirling Stirling Scotland;

    Univ Lisbon Inst Super Tecn DEI INESC ID Lisbon Portugal;

    Univ Latvia Inst Math & Comp Sci Riga Latvia;

    Univ Lisbon Fac Ciencias BioISI Lisbon Portugal;

    Univ Amsterdam Amsterdam Netherlands;

    Aristotle Univ Thessaloniki Thessaloniki Greece;

    Linkoping Univ Linkoping Sweden;

    Queens Univ Belfast Belfast Antrim North Ireland;

    Linnaeus Univ Vaxjo Sweden;

    Univ Lisbon Fac Ciencias LASIGE Lisbon Portugal;

    Inst Politecn Lisboa Inst Super Engn Lisboa Lisbon Portugal;

    Tampere Univ Tampere Finland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    High performance computing (HPC); Big data; Data-intensive applications; Programming languages; Domain-Specific language (DSL); General-Purpose language (GPL); Systematic mapping study (SMS);

    机译:高性能计算(HPC);大数据;数据密集型应用程序;编程语言;特定领域语言(DSL);通用语言(GPL);系统制图研究(SMS);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号