首页> 外文期刊>Parallel Computing >Distributed Bucket Processing: A Paradigm Embedded In A Framework For The Parallel Processing Of Pixel Sets
【24h】

Distributed Bucket Processing: A Paradigm Embedded In A Framework For The Parallel Processing Of Pixel Sets

机译:分布式存储桶处理:嵌入在像素集并行处理框架中的范例

获取原文
获取原文并翻译 | 示例

摘要

Large datasets, such as pixels and voxels in 2D and 3D images can usually be reduced during their processing to smaller subsets with less datapoints. Such subsets can be the objects in the image, features - edges or corners - or more general, regions of interest. For instance, the transformation from a set of datapoints representing an image, to one or more subsets of datapoints representing objects in the image, is due to a segmentation algorithm and may involve both the selection of datapoints as well as a change in datastructure. The massive number of pixels in the original image, points to a data parallel approach, whereas the processing of the various objects in the image is more suitable for task parallelism. In this paper we introduce a framework for parallel image processing and we focus on an array of buckets that can be distributed over a number of processors and that contains pointers to the data from the dataset. The benefit of this approach is that the processor activity remains focussed on the datapoints that need processing and, moreover, that the load can be distributed over many processors, even in a heterogeneous computer architecture. Although the method is generally applicable in the processing of sets, in this paper we obtain our examples from the domain of image processing. As this method yields speedups that are data dependent, we derived a run-time evaluation that is able to determine if the use of distributed buckets is beneficial.
机译:大型数据集(例如2D和3D图像中的像素和体素)通常可以在处理过程中减少为具有较少数据点的较小子集。这样的子集可以是图像中的对象,特征-边缘或角-或更一般的关注区域。例如,从表示图像的一组数据点到表示图像中的对象的一个​​或多个数据点子集的转换归因于分割算法,并且可能涉及数据点的选择以及数据结构的改变。原始图像中的大量像素都指向数据并行方法,而图像中各种对象的处理更适合于任务并行性。在本文中,我们介绍了一个用于并行图像处理的框架,我们重点介绍可以在多个处理器上分布的存储桶阵列,其中包含指向数据集中数据的指针。这种方法的好处在于,处理器的活动始终集中在需要处理的数据点上,此外,即使在异构计算机体系结构中,负载也可以分布在许多处理器上。尽管该方法通常适用于集的处理,但在本文中,我们还是从图像处理领域获得了示例。由于此方法产生的速度取决于数据,因此我们得出了运行时评估,该评估能够确定使用分布式存储桶是否有益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号