首页> 外文期刊>Parallel Computing >A parallel evolutionary algorithm to optimize dynamic memory managers in embedded systems
【24h】

A parallel evolutionary algorithm to optimize dynamic memory managers in embedded systems

机译:一种并行进化算法,用于优化嵌入式系统中的动态内存管理器

获取原文
获取原文并翻译 | 示例

摘要

For the last 30 years, several dynamic memory managers (DMMs) have been proposed. Such DMMs include first fit, best fit, segregated fit and buddy systems. Since the performance, memory usage and energy consumption of each DMM differs, software engineers often face difficult choices in selecting the most suitable approach for their applications. This issue has special impact in the field of portable consumer embedded systems, that must execute a limited amount of multimedia applications (e.g., 3D games, video players, signal processing software, etc.), demanding high performance and extensive memory usage at a low energy consumption. Recently, we have developed a novel methodology based on genetic programming to automatically design custom DMMs, optimizing performance, memory usage and energy consumption. However, although this process is automatic and faster than state-of-the-art optimizations, it demands intensive computation, resulting in a time-consuming process. Thus, parallel processing can be very useful to enable to explore more solutions spending the same time, as well as to implement new algorithms. In this paper we present a novel parallel evolutionary algorithm for DMMs optimization in embedded systems, based on the Discrete Event Specification (DEVS) formalism over a Service Oriented Architecture (SOA) framework. Parallelism significantly improves the performance of the sequential exploration algorithm. On the one hand, when the number of generations are the same in both approaches, our parallel optimization framework is able to reach a speed-up of 86.40 × when compared with other state-of-the-art approaches. On the other, it improves the global quality (i.e., level of performance, low memory usage and low energy consumption) of the final DMM obtained in a 36.36% with respect to two well-known general-purpose DMMs and two state-of-the-art optimization methodologies.
机译:在过去的30年中,已经提出了几种动态内存管理器(DMM)。这样的数字万用表包括“最适合”,“最适合”,“分离适合”和“伙伴”系统。由于每个DMM的性能,内存使用情况和能耗不同,因此软件工程师在选择最适合其应用程序的方法时通常会面临艰难的选择。该问题在便携式消费类嵌入式系统领域具有特殊影响,该便携式消费类嵌入式系统必须执行有限数量的多媒体应用程序(例如3D游戏,视频播放器,信号处理软件等),从而要求高性能和低内存使用率能源消耗。最近,我们开发了一种基于基因编程的新颖方法,可自动设计定制的DMM,优化性能,内存使用和能耗。但是,尽管此过程是自动的,并且比最先进的优化速度更快,但是它需要大量的计算,这会耗时。因此,并行处理对于在同​​一时间探索更多解决方案以及实现新算法非常有用。在本文中,我们基于面向服务的体系结构(SOA)框架上的离散事件规范(DEVS)形式主义,为嵌入式系统中的DMM优化提供了一种新颖的并行进化算法。并行性显着提高了顺序探索算法的性能。一方面,当两种方法的代数相同时,与其他最新方法相比,我们的并行优化框架可以达到86.40×的加速。另一方面,相对于两个著名的通用数字万用表和两个状态良好的数字万用表,它可以将最终数字万用表的整体质量(即性能水平,低内存使用量和低能耗)提高到36.36%。最先进的优化方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号