首页> 外文期刊>Parallel Computing >Resource allocation for multiple concurrent in-network stream-processing applications
【24h】

Resource allocation for multiple concurrent in-network stream-processing applications

机译:多个并发的网络内流处理应用程序的资源分配

获取原文
获取原文并翻译 | 示例

摘要

This work investigates the operator mapping problem for in-network stream-processing. In a stream-processing application, a tree of operators is applied, in steady-state mode, to datasets that are continuously updated at different locations in the network. The goal is to generate updated final results at a desired rate. In in-network stream-processing, dataset updates and operator computations are performed by servers distributed in a network. We consider the problem of mapping operators to these servers in the case of multiple concurrent stream-processing applications. In this case, different operator trees corresponding to different applications may share common subtrees, so that intermediate results can be reused by different applications. This work provides complexity results for different versions of the operator mapping problem, which can be formulated as integer linear programs. Several polynomial-time heuristics are proposed for a particularly relevant version of the problem, which is NP-hard. These heuristics are compared and evaluated via simulation. The results demonstrate the importance of mapping the operators to appropriate processors, and the importance of sharing common sub-trees across operator trees.
机译:这项工作调查网络内流处理的操作员映射问题。在流处理应用程序中,以稳定模式将运算符树应用于在网络中不同位置连续更新的数据集。目标是以期望的速度生成更新的最终结果。在网络内流处理中,数据集更新和运算符计算由分布在网络中的服务器执行。在多个并行流处理应用程序的情况下,我们考虑将运算符映射到这些服务器的问题。在这种情况下,对应于不同应用程序的不同运算符树可以共享公共子树,以便中间结果可以被不同的应用程序重用。这项工作为操作员映射问题的不同版本提供了复杂性结果,可以将其表达为整数线性程序。针对该问题的一个特别相关的版本,提出了几种多项式时间启发式算法,即NP-hard。这些启发式方法通过仿真进行比较和评估。结果证明了将运算符映射到适当的处理器的重要性,以及在运算符树之间共享公共子树的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号