首页> 外文期刊>Parallel Computing >Evaluation of state-of-the-art hardware architectures for fast cone-beam CT reconstruction
【24h】

Evaluation of state-of-the-art hardware architectures for fast cone-beam CT reconstruction

机译:快速锥束CT重建的最新硬件架构评估

获取原文
获取原文并翻译 | 示例

摘要

We present an evaluation of state-of-the-art computer hardware architectures for imple menting the FDK method, which solves the 3-D image reconstruction task in cone-beam computed tomography (CT). The computational complexity of the FDK method prohibits its use for many clinical applications unless appropriate hardware acceleration is employed. Today's most powerful hardware architectures for high-performance computing applications are based on standard multi-core processors, off-the-shelf graphics boards, the Cell Broadband Engine Architecture (CBEA), or customized accelerator platforms (e.g., FPGA-based computer components). For each hardware platform under consideration, we describe a thoroughly optimized implementation of the most time-consuming parts of the FDK algorithm; the filtering step as well as the subsequent back-projection step. We further explain the required code trans formations to parallelize the algorithm for the respective target architecture. We compare both the implementation complexity and the resulting performance of all architectures under consideration using the same two medical datasets which have been acquired using a standard C-arm device. Our optimized back-projection implementations achieve at least a speedup of 6.5 (CBEA, two processors), 22.0 (GPU, single board), and 35.8 (FPGA, 9 chips) compared to a standard workstation equipped with a quad-core processor.
机译:我们介绍了用于实现FDK方法的最新计算机硬件体系结构的评估,该方法解决了锥束计算机断层扫描(CT)中的3D图像重建任务。除非采用适当的硬件加速,否则FDK方法的计算复杂性使其无法用于许多临床应用。当今,用于高性能计算应用程序的最强大的硬件体系结构基于标准的多核处理器,现成的图形卡,单元宽带引擎体系结构(CBEA)或定制的加速器平台(例如,基于FPGA的计算机组件) 。对于所考虑的每个硬件平台,我们将对FDK算法中最耗时的部分进行彻底优化的实现。滤波步骤以及后续的反投影步骤。我们进一步解释了所需的代码转换,以并行化各个目标体系结构的算法。我们使用相同的两个医疗数据集(使用标准C臂设备获取的数据),比较了正在考虑的所有体系结构的实现复杂性和最终性能。与配备四核处理器的标准工作站相比,我们优化的背投实现方案至少可实现6.5(CBEA,两个处理器),22.0(GPU,单板)和35.8(FPGA,9芯片)的加速。

著录项

  • 来源
    《Parallel Computing》 |2012年第3期|p.111-124|共14页
  • 作者单位

    Siemens AG, Healthcare Sector, CV Division, Medical Electronics and Imaging Solutions, Mozartstr. 57, 91052 Erlangen, Germany;

    Siemens AG, Healthcare Sector, Angiography and Interventional X-Ray Systems, Siemensstr. 1, 91301 Forchheim, Germany;

    Friedrich-Alexander-University Erlangen-Nuremberg, Department of Computer Science, Pattern Recognition Lab (LME), Martensstr. 3, 91058 Erlangen, Germany;

    Friedrich-Alexander-University Erlangen-Nuremberg, Department of Computer Science, Pattern Recognition Lab (LME), Martensstr. 3, 91058 Erlangen, Germany;

    Friedrich-Alexander-University Erlangen-Nuremberg, Department of Computer Science, Pattern Recognition Lab (LME), Martensstr. 3, 91058 Erlangen, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    computed tomography; FDK reconstruction; back-projection; filtering; hardware acceleration;

    机译:CT检查;FDK重建;反投影过滤硬件加速;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号