首页> 外文期刊>Parallel Computing >A matrix-algebraic formulation of distributed -memory maximal cardinality matching algorithms in bipartite graphs
【24h】

A matrix-algebraic formulation of distributed -memory maximal cardinality matching algorithms in bipartite graphs

机译:二部图中分布式内存最大基数匹配算法的矩阵-代数表示

获取原文
获取原文并翻译 | 示例

摘要

We describe parallel algorithms for computing maximal cardinality matching in a bipartite graph on distributed-memory systems. Unlike traditional algorithms that match one vertex at a time, our algorithms process many unmatched vertices simultaneously using a matrix algebraic formulation of maximal matching. This generic matrix-algebraic framework is used to develop three efficient maximal matching algorithms with minimal changes. The newly developed algorithms have two benefits over existing graph-based algorithms. First, unlike existing parallel algorithms, cardinality of matching obtained by the new algorithms stays constant with increasing processor counts, which is important for predictable and reproducible performance. Second, relying on bulk-synchronous matrix operations, these algorithms expose a higher degree of parallelism on distributed-memory platforms than existing graph-based algorithms.
机译:我们描述了用于在分布式内存系统的二部图中计算最大基数匹配的并行算法。与一次匹配一个顶点的传统算法不同,我们的算法使用最大匹配的矩阵代数公式同时处理许多不匹配的顶点。该通用矩阵-代数框架用于开发三种有效的最大匹配算法,且变化最小。与现有的基于图的算法相比,新开发的算法具有两个好处。首先,与现有的并行算法不同,新算法获得的匹配基数随着处理器数量的增加而保持不变,这对于可预测和可再现的性能非常重要。其次,与现有的基于图的算法相比,这些算法依赖于批量同步矩阵运算,在分布式内存平台上具有更高的并行度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号