首页> 外文期刊>Parallel Computing >MPI-CUDA parallel linear solvers for block-tridiagonal matrices in the context of SLEPc's eigensolvers
【24h】

MPI-CUDA parallel linear solvers for block-tridiagonal matrices in the context of SLEPc's eigensolvers

机译:在SLEPc本征求解器的背景下,用于块三对角矩阵的MPI-CUDA并行线性求解器

获取原文
获取原文并翻译 | 示例

摘要

We consider the computation of a few eigenpairs of a generalized eigenvalue problen Ax = lambda Bx with block-tridiagonal matrices, not necessarily symmetric, in the context of Krylov methods. In this kind of computation, it is often necessary to solve a linear system of equations in each iteration of the eigensolver, for instance when B is not the identity matrix or when computing interior eigenvalues with the shift- and-invert spectral transformation. In this work, we aim to compare different direct linear solvers that can exploit the block-tridiagonal structure. Block cyclic reduction and the Spike algorithm are considered A parallel implementation based on MPI is developed in the context of the SLEPc library The use of GPU devices to accelerate local computations shows to be competitive for large block sizes. (C) 2017 Elsevier B.V. All rights reserved
机译:我们考虑在克雷洛夫方法的情况下,使用块三对角矩阵(不一定是对称的)计算广义特征值概率Ax = lambda Bx的几个特征对。在这种计算中,通常需要在特征求解器的每次迭代中求解线性方程组,例如,当B不是单位矩阵或使用频移和反转频谱变换计算内部特征值时。在这项工作中,我们旨在比较可以利用块对角线结构的不同直接线性求解器。考虑使用块循环缩减和Spike算法在SLEPc库的上下文中开发了基于MPI的并行实现。使用GPU设备加速本地计算显示出对大块尺寸的竞争。 (C)2017 Elsevier B.V.保留所有权利

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号