首页> 外文期刊>Parallel Computing >Comparing load-balancing algorithms for MapReduce under Zipfian data skews
【24h】

Comparing load-balancing algorithms for MapReduce under Zipfian data skews

机译:Zipfian数据偏斜下MapReduce的负载均衡算法比较

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we analyze applicability of various load-balancing methods in countering data skew in MapReduce computations. A MapReduce job consists of several phases: mapping, shuffling data, sorting and reducing. The distribution of the work in the last three phases is data-driven, and unequal distribution of the data keys may cause imbalance in the computation completion times and prolonged execution of the whole job. We propose algorithms of four different types for balancing computational effort in reduce-heavy MapReduce jobs and evaluate their performance under various degrees of data skew and system parameters. By applying an innovative method of visualizing algorithm dominance conditions, we are able to determine conditions under which certain load-balancing algorithms are capable of scheduling MapReduce computations well. We conclude that no single algorithm is a panacea and hybrid approaches are necessary. (C) 2017 Elsevier B.V. All rights reserved.
机译:在本文中,我们分析了各种负载平衡方法在应对MapReduce计算中的数据偏斜方面的适用性。 MapReduce作业包括以下几个阶段:映射,改组数据,排序和归约。最后三个阶段的工作分配是由数据驱动的,并且数据密钥的分配不均等可能会导致计算完成时间的不平衡和整个工作的延长执行。我们提出了四种不同类型的算法来平衡繁重的MapReduce作业中的计算工作量,并在各种程度的数据偏斜和系统参数下评估其性能。通过应用可视化算法优势条件的创新方法,我们能够确定某些负载均衡算法能够很好地调度MapReduce计算的条件。我们得出的结论是,没有任何单一算法是万能药,而混合方法是必需的。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号