首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >FRATO: Fog Resource Based Adaptive Task Offloading for Delay-Minimizing IoT Service Provisioning
【24h】

FRATO: Fog Resource Based Adaptive Task Offloading for Delay-Minimizing IoT Service Provisioning

机译:FRO:基于FOG资源的自适应任务卸载,用于延迟最小化IOT服务配置

获取原文
获取原文并翻译 | 示例

摘要

In the IoT-based systems, the fog computing allows the fog nodes to offload and process tasks requested from IoT-enabled devices in a distributed manner instead of the centralized cloud servers to reduce the response delay. However, achieving such a benefit is still challenging in the systems with high rate of requests, which imply long queues of tasks in the fog nodes, thus exposing probably an inefficiency in terms of latency to offload the tasks. In addition, a complicated heterogeneous degree in the fog environment introduces an additional issue that many of single fogs can not process heavy tasks due to lack of available resources or limited computing capabilities. To cope with the situation, this article introduces FRATO (Fog Resource aware Adaptive Task Offloading) - a framework for the IoT-fog-cloud systems to offer the minimal service provisioning delay through an adaptive task offloading mechanism. Fundamentally, FRATO is based on the fog resource to select flexibly the optimal offloading policy, which in particular includes a collaborative task offloading solution based on the data fragment concept. In addition, two distributed fog resource allocation algorithms, namely TPRA and MaxRU are developed to deploy the optimized offloading solutions efficiently in cases of resource competition. Through the extensive simulation analysis, the FRATO-based service provisioning approaches show potential advantages in reducing the average delay significantly in the systems with high rate of service requests and heterogeneous fog environment compared with the existing solutions.
机译:在基于物联网的系统中,雾计算允许雾节点以分布式方式卸载和处理从IoL启用设备所请求的处理任务,而不是集中式云服务器以减少响应延迟。然而,在具有高要求率的系统中实现这种益处仍然挑战,这意味着雾节点中的任务长时间队列,因此可能在脱机任务的延迟方面的低效率。此外,雾环境中复杂的异构度引入了一个额外的问题,即由于缺乏可用资源或有限的计算能力,许多单一雾不能处理重任务。为了应对这种情况,本文介绍了FRATO(雾资源感知自适应任务卸载) - 通过自适应任务卸载机制提供最小的服务供应延迟的IOT-FOG-CLOUD系统的框架。从根本上,Frato基于雾资源来选择灵活的最佳卸载策略,特别是基于数据片段概念的协作任务卸载解决方案。此外,开发了两个分布式雾资源分配算法,即TPRA和MAXRU,以在资源竞争的情况下有效地部署优化的卸载解决方案。通过广泛的仿真分析,与现有解决方案相比,基于Frato的服务供应方法展示了降低具有高服务请求和异构雾环境的系统中的平均延迟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号