首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >A GPU Acceleration Framework for Motif and Discord Based Pattern Mining
【24h】

A GPU Acceleration Framework for Motif and Discord Based Pattern Mining

机译:基于MOTIF和不和谐的模式挖掘的GPU加速框架

获取原文
获取原文并翻译 | 示例

摘要

With the fast digitalization of our society, mining patterns from large time series data is increasingly becoming a critical problem for a wide range of big data applications. Motif and discord discovery algorithms, which offer effective solutions to identify repeatedly appearing and abnormal patterns, respectively, are fundamental building blocks for time series processing. Both approaches, however, can be time extremely consuming when handling large time series due to the subsequence-based computations of distance similarity metrics. In this article, we show that the highly involved subsequence-based computations can actually be decomposed into a few fine-grained computing patterns for efficient data parallel computing. By developing highly efficient GPU algorithms for such basic patterns and effectively composing such patterns, we are able to solve both motif and discord discovery problems under euclidean and DTW distance metrics in a unified GPU acceleration framework. Extensive experiments prove that the proposed framework outperforms pruned CPU algorithms by up to three orders of magnitude. Our work paves the foundation of building GPU acceleration frameworks for large-scale time series datasets.
机译:随着社会的快速数字化,来自大型时间序列数据的挖掘模式越来越多地成为广泛的大数据应用的关键问题。图案和Discord发现算法分别提供有效的解决方案来分别识别反复出现和异常模式,是时间序列处理的基本构建块。然而,由于基于后距离相似度量的基于后续计算,处理大型时间序列时,这两种方法都可能非常消耗。在本文中,我们表明,高度涉及的基于子项的计算实际上可以分解成一些用于有效数据并行计算的一些细粒化计算模式。通过为这种基本模式开发高效的GPU算法并有效地构成这种模式,我们能够在统一的GPU加速框架中解决欧几里德和DTW距离度量下的主题和不和谐发现问题。广泛的实验证明,所提出的框架优于提出的CPU算法,最多三个数量级。我们的工作铺平了大型时间序列数据集的GPU加速框架的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号