首页> 外文期刊>Parallel and Distributed Systems, IEEE Transactions on >GA-Par: Dependable Microservice Orchestration Framework for Geo-Distributed Clouds
【24h】

GA-Par: Dependable Microservice Orchestration Framework for Geo-Distributed Clouds

机译:GA-PAR:用于地理分布式云的可靠微服务编排框架

获取原文
获取原文并翻译 | 示例

摘要

Recent advances in composing Cloud applications have been driven by deployments of inter-networking heterogeneous microservices across multiple Cloud datacenters. System dependability has been of the upmost importance and criticality to both service vendors and customers. Security, a measurable attribute, is increasingly regarded as the representative example of dependability. Literally, with the increment of microservice types and dynamicity, applications are exposed to aggravated internal security threats and externally environmental uncertainties. Existing work mainly focuses on the QoS-aware composition of native VM-based Cloud application components, while ignoring uncertainties and security risks among interactive and interdependent container-based microservices. Still, orchestrating a set of microservices across datacenters under those constraints remains computationally intractable. This paper describes a new dependable microservice orchestration framework GA-Par to effectively select and deploy microservices whilst reducing the discrepancy between user security requirements and actual service provision. We adopt a hybrid (both whitebox and blackbox based) approach to measure the satisfaction of security requirement and the environmental impact of network QoS on system dependability. Due to the exponential grow of solution space, we develop a parallel Genetic Algorithm framework based on Spark to accelerate the operations for calculating the optimal or near-optimal solution. Large-scale real world datasets are utilized to validate models and orchestration approach. Experiments show that our solution outperforms the greedy-based security aware method with 42.34 percent improvement. GA-Par is roughly 4× faster than a Hadoop-based genetic algorithm solver and the effectiveness can be constantly guaranteed under different application scales.
机译:组合云应用程序的最新进展是由网络间之间的部署在多个云数据中心跨越多个云数据中心的组成异构微服务。系统可靠性对服务供应商和客户来说都是最重要的和重要性。安全性,可测量的属性越来越多地被视为可靠性的代表性示例。从字面上,随着微型类型和动力学的增量,应用面临加重内部安全威胁和外部环境不确定性。现有工作主要集中在基于QoS的云应用程序组件的QoS感知组合上,同时忽略基于交互式和相互依存的容器的微服务之间的不确定性和安全风险。仍然,在这些约束下的数据中心编排了一组微服务仍然是计算难以解决的。本文介绍了一种新的可靠微服务编程框架GA-PAR,可有效地选择和部署微服务,同时降低用户安全要求和实际服务提供之间的差异。我们采用混合动力(白箱和BlackBox为基础的)方法来衡量安全要求的满意度和网络QoS对系统可靠性的环境影响。由于溶液空间的指数增长,我们基于火花开发了一个平行的遗传算法框架,以加速计算最佳或近最优解决方案的操作。大型现实世界数据集用于验证模型和编排方法。实验表明,我们的解决方案优于基于贪婪的安全意识方法,改进了42.34%。 GA-PAR大约比Hadoop的遗传算法求出速度快4倍,并且可以在不同的应用范围下持续保证有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号