首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Dynamic Undervolting to Improve Energy Efficiency on Multicore X86 CPUs
【24h】

Dynamic Undervolting to Improve Energy Efficiency on Multicore X86 CPUs

机译:动态欠压,以提高Multicore X86 CPU上的能效

获取原文
获取原文并翻译 | 示例
           

摘要

Chip manufacturers introduce redundancy at various levels of CPU design to guarantee correct operation, even for worst-case combinations of non-idealities in process variation and system operating conditions. This redundancy is implemented partly in the form of voltage margins. However, for a wide range of real-world execution scenarios these margins are excessive and merely translate to increased power consumption, hindering the effort towards higher energy efficiency in both HPC and general purpose computing. Our study on the x86-64 Haswell and Skylake multicore microarchitectures reveals wide voltage margins, which vary across different microarchitectures, different chip parts of the same microarchitecture, and across different workloads. We find that it is necessary to quantify voltage margins using multi-threaded and multi-instance workloads, as characterization with single-threaded and single-instance workloads that do not stress the CPU to its full capacity typically identifies overly optimistic margins that lead to errors when applied in realistic program execution scenarios. In addition, we introduce, deploy and evaluate a run-time governor that dynamically reduces the supply voltage of modern multicore x86-64 CPUs. Our governor employs a model that takes as input a set of performance metrics which are directly measurable via performance monitoring counters and have high predictive value for the minimum tolerable supply voltage (V-min), to predict and apply the appropriate reduction for the workload at hand. Compared with the conventional DVFS governor, our approach achieves up to 42 percent energy savings for the Skylake family and 34 percent for the Haswell family for complex, real-world applications.
机译:芯片制造商在各种级别的CPU设计中引入冗余,以保证正确的操作,即使是流程变化和系统操作条件中的非理想情况的最坏情况。该冗余部分以电压边缘的形式部分实施。然而,对于广泛的实际执行场景,这些边距过多,仅转化为增加的功耗,阻碍了HPC和通用计算中更高能源效率的努力。我们对X86-64 Haswell和Skylake多核微核结构的研究揭示了宽的电压边距,这些边距各不相同,不同的微体系结构,不同的微体系结构的不同芯片部分,以及不同的工作负载。我们发现有必要使用多线程和多实例工作负载量化电压边距,因为使用单线程和单个实例工作负载的表征,不会将CPU强调为其全部容量通常识别过度乐观的利润,导致错误应用于现实计划执行方案时。此外,我们介绍,部署和评估运行时调速器,动态降低了现代多核X86-64 CPU的电源电压。我们的州长采用了一种模型,它是输入一组性能指标,它通过性能监测计数器直接可测量,并且具有最小可容忍电源电压(V-min)的高预测值,以预测和应用工作负载的适当减少手。与传统的DVFS州长相比,我们的方法可以为Skylake家族提供高达42%的节能,为哈斯韦尔家族进行复杂,现实世界应用的34%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号