首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >On the granularity and clustering of directed acyclic task graphs
【24h】

On the granularity and clustering of directed acyclic task graphs

机译:有向无环任务图的粒度和聚类

获取原文
获取原文并翻译 | 示例

摘要

The authors consider the impact of the granularity on scheduling task graphs. Scheduling consists of two parts, the processors assignment of tasks, also called clustering, and the ordering of tasks for execution in each processor. The authors introduce two types of clusterings: nonlinear and linear clusterings. A clustering is nonlinear if two parallel tasks are mapped in the same cluster otherwise it is linear. Linear clustering fully exploits the natural parallelism of a given directed acyclic task graph (DAG) while nonlinear clustering sequentializes independent tasks to reduce parallelism. The authors also introduce a new quantification of the granularity of a DAG and define a coarse grain DAG as the one whose granularity is greater than one. It is proved that every nonlinear clustering of a coarse grain DAG can be transformed into a linear clustering that has less or equal parallel time than the nonlinear one. This result is used to prove the optimality of some important linear clusterings used in parallel numerical computing.
机译:作者考虑了粒度对调度任务图的影响。调度由两部分组成,即任务的处理器分配(也称为集群)和在每个处理器中执行的任务排序。作者介绍了两种类型的聚类:非线性聚类和线性聚类。如果两个并行任务映射在同一群集中,则群集是非线性的,否则是线性的。线性聚类充分利用给定有向无环任务图(DAG)的自然并行性,而非线性聚类对独立任务进行排序以减少并行性。作者还介绍了DAG粒度的新量化方法,并将粗粒DAG定义为粒度大于1的DAG。事实证明,粗粒DAG的每个非线性聚类都可以转换为比非线性聚类具有更少或相等的并行时间的线性聚类。该结果用于证明并行数值计算中使用的一些重要线性聚类的最优性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号