首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >A parallel algorithm for random walk construction with application to the Monte Carlo solution of partial differential equations
【24h】

A parallel algorithm for random walk construction with application to the Monte Carlo solution of partial differential equations

机译:并行游走构造的并行算法及其在偏微分方程的蒙特卡洛解中的应用

获取原文
获取原文并翻译 | 示例

摘要

Random walks are widely applicable in statistical and scientific computations. In particular, they are used in the Monte Carlo method to solve elliptic and parabolic partial differential equations (PDEs). This method holds several advantages over other methods for PDEs as it solves problems with irregular boundaries and/or discontinuities, gives solutions at individual points, and exhibits great parallelism. However, the generation of each random walk in the Monte Carlo method has been done sequentially because each point in the walk is derived from the preceding point by moving one grid step along a randomly selected direction. A parallel algorithm for random walk generation in regular as well as irregular regions is presented. The algorithm is based on parallel prefix computations. The communication structure of the algorithm is shown to ideally fit on a hypercube of n nodes, where n is the number of processors.
机译:随机游走可广泛应用于统计和科学计算中。特别是,它们在蒙特卡洛方法中用于求解椭圆和抛物线偏微分方程(PDE)。该方法解决了具有不规则边界和/或不连续性的问题,在各个点给出了解决方案,并显示出很大的并行性,因此与PDE的其他方法相比,具有许多优点。但是,由于在行进中的每个点都是通过沿随机选择的方向移动一个网格步长而从先前的点派生而来的,所以已按顺序完成了蒙特卡洛方法中每个随机行进的生成。提出了在规则区域和不规则区域中随机游动生成的并行算法。该算法基于并行前缀计算。所示算法的通信结构理想地适合于n个节点的超立方体,其中n是处理器数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号