首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Compiling for distributed memory architectures
【24h】

Compiling for distributed memory architectures

机译:针对分布式内存架构进行编译

获取原文
获取原文并翻译 | 示例

摘要

The lack of high-level languages and good compilers for parallel machines hinders their widespread acceptance and use. Programmers must address issues such as process decomposition, synchronization, and load balancing. We have developed a parallelizing compiler that, given a sequential program and a memory layout of its data, performs process decomposition while balancing parallelism against locality of reference. A process decomposition is obtained by specializing the program for each processor to the data that resides on that processor. If this analysis fails, the compiler falls back to a simple but inefficient scheme called run-time resolution. Each process's role in the computation is determined by examining the data required for execution at run-time. Thus, our approach to process decomposition is data-driven rather than program-driven. We discuss several message optimizations that address the issues of overhead and synchronization in message transmission. Accumulation reorganizes the computation of a commutative and associative operator to reduce message traffic. Pipelining sends a value as close to its computation as possible to increase parallelism. Vectorization of messages combines messages with the same source and the same destination to reduce overhead. Our results from experiments in parallelizing SIMPLE, a large hydrodynamics benchmark, for the Intel iPSC/2, show a speedup within 60% to 70% of handwritten code.
机译:缺乏用于并行机的高级语言和好的编译器,阻碍了它们的广泛接受和使用。程序员必须解决诸如进程分解,同步和负载平衡之类的问题。我们已经开发了并行化编译器,该编译器在给定顺序程序及其数据的内存布局的情况下,在平衡并行性与引用局部性的同时执行进程分解。通过将每个处理器的程序专用于驻留在该处理器上的数据,可以实现进程分解。如果此分析失败,则编译器将退回到一种简单但效率低下的方案,称为运行时解析。通过在运行时检查执行所需的数据,可以确定每个进程在计算中的作用。因此,我们的流程分解方法是数据驱动的,而不是程序驱动的。我们讨论了几种消息优化,以解决消息传输中的开销和同步问题。累积重新组织了可交换和关联运算符的计算,以减少消息流量。流水线发送的值尽可能接近其计算值,以增加并行度。消息的向量化将具有相同源和相同目标的消息组合在一起,以减少开销。我们通过并行化SIMPLE(大型水动力基准)为Intel iPSC / 2进行的实验结果表明,加速了手写代码60%至70%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号