首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Dynamic task allocation models for large distributed computing systems
【24h】

Dynamic task allocation models for large distributed computing systems

机译:大型分布式计算系统的动态任务分配模型

获取原文
获取原文并翻译 | 示例

摘要

Dynamic task allocation for distributed computing systems (DCS) is an important goal to be achieved for engineering applications. The purpose of dynamic task allocation is to increase the system throughput in a dynamic environment, which can be done by balancing the utilization of computing resources and minimizing communication between processors during run time. In this paper, we propose two dynamic task allocation models which are: 1) the clustering simulated annealing model (CSAM); and 2) the mean field annealing model (MFAM). Both of these models combine characteristics of statistical and deterministic approaches. These models provide the rapid convergence characteristic of the deterministic approaches while preserving the solution quality afforded by simulated annealing. Simulation results of the CSAM and MFAM provide a stable and balanced system with 50% and 10% of the convergence time needed by simulated annealing, respectively. The results of this research are important in that it presents the feasibility of applying statistically based task allocation models on large DCSs in a dynamic environment. Solutions of these models depend on the annealing process instead of the structures of the input data, providing the possibility of obtaining better solutions by using more efficient computing hardware.
机译:分布式计算系统(DCS)的动态任务分配是工程应用程序要实现的重要目标。动态任务分配的目的是增加动态环境中的系统吞吐量,这可以通过平衡计算资源的利用率并在运行时最小化处理器之间的通信来实现。在本文中,我们提出了两个动态任务分配模型:1)聚类模拟退火模型(CSAM); 2)平均场退火模型(MFAM)。这两个模型都结合了统计和确定性方法的特征。这些模型提供了确定性方法的快速收敛特性,同时保留了模拟退火提供的解决方案质量。 CSAM和MFAM的仿真结果提供了一个稳定且平衡的系统,其模拟退火所需的收敛时间分别为50%和10%。这项研究的结果很重要,因为它提出了在动态环境中在大型DCS上应用基于统计的任务分配模型的可行性。这些模型的解决方案取决于退火过程而不是输入数据的结构,从而提供了通过使用更高效的计算硬件来获得更好解决方案的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号