首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >All-to-all broadcast and matrix multiplication in faulty SIMD hypercubes
【24h】

All-to-all broadcast and matrix multiplication in faulty SIMD hypercubes

机译:故障SIMD超立方体中的全部广播和矩阵乘法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we develop algorithms in order of efficiency for all-to-all broadcast problem in an N=2/sup n/-node n-dimensional faulty SIMD hypercube, Q/sub n/, with up to n-1 node faults. The algorithms use a property of a certain ordering of dimensions. Our analysis includes startup time (/spl alpha/) and transfer time (/spl beta/). We have established the lower bound for such an algorithm to be n/spl alpha/+(2N-3)L/spl beta/ in a faulty hypercube with at most n-1 faults (each node has a value of L bytes). Our best algorithm requires 2n/spl alpha/+2NL/spl beta/ and is near-optimal. We develop an optimal algorithm for matrix multiplication in a faulty hypercube using all-to-all broadcast and compare the efficiency of all-to-all broadcast approach with broadcast approach and global sum approach for matrix multiplication. The algorithms are congestion-free and applicable in the context of available hypercube machines.
机译:在本文中,我们按效率顺序开发算法,以解决N = 2 / sup n /节点n维故障SIMD超立方体Q / sub n /(最多n-1个节点)中的所有广播问题故障。该算法使用尺寸的某些顺序的属性。我们的分析包括启动时间(/ spl alpha /)和传输时间(/ spl beta /)。我们已将这种算法的下限确定为在最多有n-1个错误(每个节点的值为L个字节)的故障超立方体中为n / spl alpha / +(2N-3)L / spl beta /。我们最好的算法需要2n / spl alpha / + 2NL / spl beta /,并且接近最佳。我们开发了一种使用全广播的故障超立方体中矩阵乘法的最佳算法,并将全广播方法与广播方法和全局和方法进行矩阵乘法的效率进行了比较。该算法是无拥塞的,并且适用于可用的超立方体计算机。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号