首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >A parallel two-level hybrid method for tridiagonal systems and its application to fast Poisson solvers
【24h】

A parallel two-level hybrid method for tridiagonal systems and its application to fast Poisson solvers

机译:三对角线系统的并行两级混合方法及其在快速泊松求解器中的应用

获取原文
获取原文并翻译 | 示例

摘要

A new method, namely, the parallel two-level hybrid (PTH) method, is developed to solve tridiagonal systems on parallel computers. PTH has two levels of parallelism. The first level is based on algorithms developed from the Sherman-Morrison modification formula, and the second level can choose different parallel tridiagonal solvers for different applications. By choosing different outer and inner solvers and by controlling its two-level partition, PTH can deliver better performance for different applications on different machine ensembles and problem sizes. In an extreme case, the two levels of parallelism can be merged into one, and PTH can be the best algorithm otherwise available. Theoretical analyses and numerical experiments indicate that PTH is significantly better than existing methods on massively parallel computers. For instance, using PTH in a fast Poisson solver results in a 2-folds speedup compared to a conventional parallel Poisson solver on a 512 nodes IBM machine. When only the tridiagonal solver is considered, PTH is over 10 times faster than the currently used implementation.
机译:开发了一种新的方法,即并行两级混合(PTH)方法,以解决并行计算机上的三对角线系统。 PTH具有两个并行级别。第一级基于从Sherman-Morrison修改公式开发的算法,第二级可以针对不同的应用选择不同的平行三对角线求解器。通过选择不同的外部和内部求解器并控制其两级分区,PTH可以针对不同的机器组合和问题大小的不同应用提供更好的性能。在极端情况下,两个并行级别可以合并为一个,而PTH可能是最好的最佳算法。理论分析和数值实验表明,PTH明显优于大型并行计算机上的现有方法。例如,与512节点IBM机器上的常规并行Poisson求解器相比,在快速的Poisson求解器中使用PTH可使速度​​提高2倍。仅考虑三对角线求解器时,PTH比当前使用的实现快10倍以上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号