首页> 外文期刊>Parallel and Distributed Systems, IEEE Transactions on >Realistic Workload Modeling and Its Performance Impacts in Large-Scale eScience Grids
【24h】

Realistic Workload Modeling and Its Performance Impacts in Large-Scale eScience Grids

机译:大型eScience网格中的实际工作量建模及其性能影响

获取原文
获取原文并翻译 | 示例

摘要

Grid computing proves to be a successful paradigm for large-scale distributed data processing, and global eScience grids have been in production for years (e.g., LCG and OSG). The majority of applications running on these production environments can be characterized as massive CPU-intensive batch jobs (or ¿bag-of-tasks¿), sometimes considered as the ¿killer¿ application for the grid. A deep understanding of its main workload characteristics is not only necessary for realistic performance evaluation of the existing system, but also crucial to generate new insights into better resource allocation schemes. This paper presents a comprehensive statistical analysis of the workloads on production eScience grid environments. We focus on second-order statistics and the scaling behavior of main job characteristics, namely job arrivals and job runtimes. A range of autocorrelation structures is identified and analyzed, including pseudoperiodicity, short-range dependence (SRD), and long-range dependence (LRD). We further develop mathematical models that are able to capture these salient properties in the workloads. Workload models, in turn, enable us to quantitatively evaluate the performance impacts of autocorrelations in grid scheduling. The results indicate that autocorrelations in workloads result in system performance degradation, sometimes the difference can be as large as up to several orders of magnitude. Nevertheless, better performance can be achieved at the grid level under bursty local background workloads. Such effects of workloads on systems are extensively analyzed and explained.
机译:事实证明,网格计算是大规模分布式数据处理的成功范例,并且全球eScience网格已经投入生产多年(例如LCG和OSG)。在这些生产环境上运行的大多数应用程序可以被描述为大量的CPU密集型批处理作业(或ƒƒÂ¢â€œtask-of-tasksÂÂÂÂ),有时也被视为ƒƒÂ ,killerƒ,,网格应用程序。深入了解其主要工作负载特征不仅是对现有系统进行实际性能评估所必需的,而且对于对更好的资源分配方案产生新见解也至关重要。本文对生产eScience网格环境中的工作负载进行了全面的统计分析。我们专注于二阶统计量和主要工作特征(即工作到达和工作时间)的缩放行为。识别并分析了一系列自相关结构,包括伪周期性,短程依赖关系(SRD)和长程依赖关系(LRD)。我们将进一步开发数学模型,以捕获工作负载中的这些显着特性。反过来,工作量模型使我们能够定量评估网格调度中自相关的性能影响。结果表明,工作负载中的自相关会导致系统性能下降,有时差异可能高达几个数量级。但是,在突发的本地后台工作负载下,可以在网格级别上实现更好的性能。工作负载对系统的这种影响得到了广泛的分析和解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号