首页> 外文期刊>Parallel and Distributed Systems, IEEE Transactions on >Cyclic Reduction Tridiagonal Solvers on GPUs Applied to Mixed-Precision Multigrid
【24h】

Cyclic Reduction Tridiagonal Solvers on GPUs Applied to Mixed-Precision Multigrid

机译:GPU上的循环约简对角线求解器应用于混合精度多网格

获取原文
获取原文并翻译 | 示例

摘要

We have previously suggested mixed precision iterative solvers specifically tailored to the iterative solution of sparse linear equation systems as they typically arise in the finite element discretization of partial differential equations. These schemes have been evaluated for a number of hardware platforms, in particular, single-precision GPUs as accelerators to the general purpose CPU. This paper reevaluates the situation with new mixed precision solvers that run entirely on the GPU: We demonstrate that mixed precision schemes constitute a significant performance gain over native double precision. Moreover, we present a new implementation of cyclic reduction for the parallel solution of tridiagonal systems and employ this scheme as a line relaxation smoother in our GPU-based multigrid solver. With an alternating direction implicit variant of this advanced smoother, we can extend the applicability of the GPU multigrid solvers to very ill-conditioned systems arising from the discretization on anisotropic meshes, that previously had to be solved on the CPU. The resulting mixed-precision schemes are always faster than double precision alone, and outperform tuned CPU solvers consistently by almost an order of magnitude.
机译:以前我们曾建议专门为稀疏线性方程组的迭代解决方案量身定制的混合精度迭代求解器,因为它们通常出现在偏微分方程的有限元离散化中。这些方案已针对多种硬件平台进行了评估,尤其是作为通用CPU加速器的单精度GPU。本文使用完全在GPU上运行的新型混合精度求解器重新评估了这种情况:我们证明了混合精度方案比原生双精度具有明显的性能提升。此外,我们为三对角线系统的并行解决方案提出了循环归约的新实现,并将此方案用作基于GPU的多网格求解器中的行松弛平滑器。借助此高级平滑器的交替方向隐式变量,我们可以将GPU多重网格求解器的适用性扩展到以前在CPU上必须解决的各向异性网格离散化引起的病态严重的系统。最终的混合精度方案总是比单独的双精度方案快,并且始终如一地优于经过调整的CPU求解器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号