首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Identification of Malicious Nodes in Peer-to-Peer Streaming: A Belief Propagation-Based Technique
【24h】

Identification of Malicious Nodes in Peer-to-Peer Streaming: A Belief Propagation-Based Technique

机译:对等流中恶意节点的识别:一种基于信仰传播的技术

获取原文
获取原文并翻译 | 示例

摘要

Peer-to-peer streaming has witnessed a great success thanks to the possibility of aggregating resources from all participants. Nevertheless, performance of the entire system may be highly degraded due to the presence of malicious peers that share bogus data on purpose. In this paper, we propose to use a statistical inference technique, namely, belief propagation (BP), to estimate the probability of peers being malicious. The detection algorithm is run by a set of trusted monitor nodes that receives notification messages (checks) from peers whenever they obtain a chunk of data; these checks contain the list of the chunk uploaders and a flag to mark the chunk as polluted or clean. Peers are able to detect if the received chunk is polluted or not but, since multiparty download is employed, they are not capable to identify the source(s) of bogus blocks. This problem definition allows us to define a factor graph of peers and checks on which an incremental version of the belief propagation algorithm is run by the monitor nodes to infer the probability of each peer being a malicious one. We evaluate the accuracy, robustness, and complexity of our technique by running a real peer-to-peer application on PlanetLab. We show that the proposed approach is very accurate and robust against malicious nodes misbehaving (different pollution intensity, presence of fake checks, churning, and total uncooperation from malicious nodes), increasing number and colluding behavior of malicious nodes.
机译:点对点流传输已取得了巨大的成功,这归功于可能聚集所有参与者的资源。但是,由于存在故意共享虚假数据的恶意对等节点,因此整个系统的性能可能会大大降低。在本文中,我们建议使用统计推断技术(即信念传播(BP))来估计对等端被恶意攻击的可能性。该检测算法由一组受信任的监视节点运行,该监视节点在对等方获取大量数据时会从对等方接收通知消息(检查)。这些检查包含块上传器列表和一个标记,用于将块标记为已污染或干净。对等方能够检测到接收到的块是否受到污染,但是由于采用了多方下载,因此它们无法识别虚假块的来源。通过此问题定义,我们可以定义对等点的因子图,并检查监视节点在其上运行了信念传播算法的增量版本,以推断每个对等点是否为恶意对象的可能性。我们通过在PlanetLab上运行一个真实的对等应用程序来评估技术的准确性,鲁棒性和复杂性。我们表明,所提出的方法对于恶意节点的行为异常(不同的污染强度,伪造支票的存在,搅动和与恶意节点的完全不合作),恶意节点数量增加和串通行为非常准确且健壮。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号