首页> 外文期刊>Parallel and Distributed Systems, IEEE Transactions on >KASR: A Keyword-Aware Service Recommendation Method on MapReduce for Big Data Applications
【24h】

KASR: A Keyword-Aware Service Recommendation Method on MapReduce for Big Data Applications

机译:KASR:MapReduce上用于大数据应用程序的关键字感知服务推荐方法

获取原文
获取原文并翻译 | 示例

摘要

Service recommender systems have been shown as valuable tools for providing appropriate recommendations to users. In the last decade, the amount of customers, services and online information has grown rapidly, yielding the big data analysis problem for service recommender systems. Consequently, traditional service recommender systems often suffer from scalability and inefficiency problems when processing or analysing such large-scale data. Moreover, most of existing service recommender systems present the same ratings and rankings of services to different users without considering diverse users’ preferences, and therefore fails to meet users’ personalized requirements. In this paper, we propose a Keyword-Aware Service Recommendation method, named KASR, to address the above challenges. It aims at presenting a personalized service recommendation list and recommending the most appropriate services to the users effectively. Specifically, keywords are used to indicate users’ preferences, and a user-based Collaborative Filtering algorithm is adopted to generate appropriate recommendations. To improve its scalability and efficiency in big data environment, KASR is implemented on Hadoop, a widely-adopted distributed computing platform using the MapReduce parallel processing paradigm. Finally, extensive experiments are conducted on real-world data sets, and results demonstrate that KASR significantly improves the accuracy and scalability of service recommender systems over existing approaches.
机译:服务推荐系统已显示为有价值的工具,可为用户提供适当的建议。在过去的十年中,客户,服务和在线信息的数量迅速增长,从而给服务推荐系统带来了大数据分析问题。因此,当处理或分析此类大规模数据时,传统的服务推荐系统经常会遇到可伸缩性和效率低下的问题。而且,大多数现有的服务推荐系统在不考虑用户的不同偏好的情况下向不同的用户提供相同的服务评级和等级,因此不能满足用户的个性化要求。在本文中,我们提出了一种名为KASR的关键字感知服务推荐方法,以解决上述挑战。它旨在呈现个性化的服务推荐列表,并有效地向用户推荐最合适的服务。具体来说,关键字用于指示用户的偏好,并且采用基于用户的协作过滤算法来生成适当的建议。为了提高其在大数据环境中的可伸缩性和效率,KASR在Hadoop上实施,Hadoop是使用MapReduce并行处理范例的广泛采用的分布式计算平台。最后,在现实世界的数据集上进行了广泛的实验,结果表明,与现有方法相比,KASR大大提高了服务推荐系统的准确性和可伸缩性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号