首页> 外文期刊>Parallel and Distributed Systems, IEEE Transactions on >Share-Frequent Sensor Patterns Mining from Wireless Sensor Network Data
【24h】

Share-Frequent Sensor Patterns Mining from Wireless Sensor Network Data

机译:从无线传感器网络数据中挖掘共享传感器模式

获取原文
获取原文并翻译 | 示例

摘要

Mining interesting knowledge from the huge amount of data gathered from WSNs is a challenge. Works reported in literature use support metric-based sensor association rules which employ the occurrence frequency of patterns as criteria. However, consideration of the binary frequency of a pattern is not a sufficient indicator for finding meaningful patterns because it only reflects the number of epochs which contain that pattern in the dataset. The share measure of sensorsets could discover useful knowledge about trigger values associated with a sensor. Here, we propose a new type of behavioral pattern called share-frequent sensor patterns (SFSPs) by considering the non-binary frequency values of sensors in epochs. SFSPs can find a correlation among a set of sensors and hence can improve the performance of WSNs in a resource management process. In this paper, a share-frequent sensor pattern tree (ShrFSP-tree) has been proposed to facilitate a pattern growth mining technique to discover SFSPs from WSN data. We also present a parallel and distributed method where the ShrFSP-tree is enhanced into PShrFSP-tree and its performance is investigated for both homogeneous and heterogeneous systems. Results show that our method is time and memory efficient in finding SFSPs than the existing most efficient algorithms.
机译:从WSN收集的大量数据中挖掘有趣的知识是一个挑战。文献中报道的工作使用基于支持度量的传感器关联规则,该规则将模式的出现频率作为标准。但是,考虑模式的二进制频率不足以找到有意义的模式,因为它仅反映数据集中包含该模式的历元数。传感器集的共享度量可以发现有关与传感器关联的触发值的有用知识。在这里,我们通过考虑历元中传感器的非二进制频率值,提出一种称为共享频率传感器模式(SFSP)的新型行为模式。 SFSP可以找到一组传感器之间的相关性,因此可以在资源管理过程中提高WSN的性能。在本文中,提出了一种共享频繁传感器模式树(ShrFSP-tree),以促进模式增长挖掘技术从WSN数据中发现SFSP。我们还提出了一种并行和分布式方法,其中将ShrFSP-tree增强为PShrFSP-tree,并对同构和异构系统的性能进行了研究。结果表明,与现有最有效的算法相比,我们的方法在查找SFSP时更节省时间和内存。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号